Fee Notice Even Sem 24-25 (Even Semester 2nd, 4th, 6th, 8th & 10th) Click Here >>
Hostel Fee Notice 24-25 Even Sem Click Here >>
Advt. for the Post of Assistant Professor in Various Subjects Click here >> Application form>>
Department of Mathematics Research Publications

Raj Kumar

  • Om. P. Ahuja, A. Centinkya and Raj Kumar, Partial sums of generalized harmonic starlike univalent functions generated by (p,q)-Ruschweyh-type harmonic differential operator.Applied Mathematics-A journal of Chinese University, 2022 (Accepted)

 

  • S. Verma, Raj Kumar and G. Murugusundramoorthy, A generalized class of a univalent harmonic mappings associated with a multiplier transformation. TWMS J. App. Eng. Math, 2022 (Accepted)

 

  • S. Verma, Raj Kumar and J. Sokol, A conjecture on Marx –Strohhacker type inclusion relation between q-convex and q-starlike functions. Bulletin des Sciences Mathematiques, 174, 2022, ID 103088.

 

  • D. Khurana, Raj Kumar, S. Gupta and S. Singh, Linear Combinations of Univalent Harmonic Mappings With Complex Coefficients. Mathematicki Vesnik, 74(3), 189-196, 2022.

 

  • Raj Kumar, M. Dorff and Jay M. Jahangiri,       Directional convexity of convolutions of harmonic functions with certain dilatations. Computational Methods and Function theory, 22, 519–534, 2022.

 

  • Raj Kumar and S. Verma, On construction and convolution properties of univalent harmonic mappings. Bulletin of Iranian Mathematical Society, 48, 1539–1552, 2022.

 

  • D. Khurana, Raj Kumar, S. Verma, A generalized class of a univalent harmonic mappings associated with a multiplier transformation. Sahand Communications in Mathematical Analysis 18(3), 27-39, 2021.

 

  • D. Khurana, Raj Kumar and S. Yalcin, A Class Of Harmonic Starlike Functions Defined By Multiplier Transformation. Advances in Mathematics:  Scientific Journal 9, 455-469, 2020.

 

  • S. Verma, D. Khurana and Raj Kumar, A class of harmonic functions associated with a generalized differential operator. Publications De L’institut Mathématique, 108 (122), 145-154, 2020.

 

  • Raj Kumar and Jay M Jahangiri, Close-to-convexity of Convolutions of Classes of Harmonic Functions. International Journal of Mathematics and Mathematical Sciences, 2018 ID 3808513

 

  • Raj Kumar, M. Dorff, S. Gupta, S. Singh, Convolution Properties of some harmonic mappings in the right-half plane. Bulletin of The Malaysian Mathematical Sciences Society, 39(1), 439-455, 2016.

                                                                          

  • Raj Kumar, S. Gupta, S, Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis. Bulletin of The Malaysian Mathematical Sciences Society 39(2), 751-763, 2016.

 

  • Raj Kumar, S. Gupta, S. Singh, M. Dorff, An application of Cohn's rule to the convolutions of univalent harmonic functions. Rocky Mountain Journal of Mathematics 46(2), 559-570,2016.

 

  • Raj Kumar, S. Gupta, S. Singh, M. Dorff, On harmonic convolutions involving a vertical strip mapping. Bulletin of The Korean Mathematical Society, 52(1), 105-123, 2015.

 

  • Raj Kumar, S. Gupta, S. Singh Convolution properties of a slanted right half-plane mapping. Matematicki Vesnik, 65(2),  213-221, 2013.

 

  • Raj Kumar, S. Gupta, S. Singh, A class of univalent harmonic functions defined by multiplier transformation.Revue roumaine de mathematiques pures et appliqués, 57(4),  371-382, 2012.

 

  • Raj Kumar, S. Gupta, S. Singh, Convolution properties of convex harmonic functions. International journal of open problems in complex analysis, 4(3), 69-77, 2012.  

 

  • A. J. Diesl, Thomas J. Dorsey, Shelly Garg     and Dinesh Khurana, A Note on Completeness and Strongly Clean Rings, Journal of Pure and                Applied Algebra, 2014, 218(661-665).

 

  • Shelly Garg, Harpreet   Kaur and Dinesh Khurana, Perspective Rings, Journal of Algebra2014, 415(1-12).

 

  • A. Gupta, Shelly Garg and Harminder Singh,’Development of chalcone-based derivatives for sensing applications, Analytical    Methods, 2020, 12 (5022-5045).

 

  • Harminder Singh, J. K. Rajput, N. Dogra, G. Jain, A.Gupta and Shelly Garg, A novel sucrose chelated visible-light sensitive AFO NPs:preparation, characterization, photocatalytic activity,and reaction, Journal of the Australian Ceramic          Society, 2021, 57 (835-848).

 

  • Ankush Gupta, Akshay Kumar, Nidhi Choudhary, Bharti Gupta, Harminder Singh, Naresh Kumar and Shelly Garg, Synthesis, Characterization, and Application of Chalcone Derivatives as Chemosensors for Cyanide Anions, Current Chinese Chemistry, 2021, 2 (43-52).

 

  • Harpreet K. Grover, Sumati Priya, Ravi Mittal and Shelly Garg, A Note on J-Symmetric Rings, Science and Technology Journal2022, 10 (74-77).

 

  • Harpreet K Grover, T.D.Narang, Shelly Garg , Strict Convexity and BetweennessSoutheast Asian Bulletin of MathematicsTo appear

 

  • Rajesh Joshi, A Novel Decision-Making Method Using R-Norm Concept and VIKOR Approach Under Picture Fuzzy Environment, Experts Systems with Applications (Elsevier), 2020, 147 (113228).

 

  • Rajesh Joshi, A New Picture Fuzzy Information Measure based on Tsallis-Havdra-Charavat Concept with Applications in Presaging Poll Outcome, Computational and Applied Mathematics (Springer), 2020, 39(2) (21-24).

 

  • Rajesh Joshi, A New Multi-Criteria Decision-Making Method based on Intuitionistic Fuzzy Information and Its Application to Fault Detection in a Machine, Journal of Ambient Intelligence and Humanized Computing (Springer), 2019, 11(2) (739-753).

 

  • Rajesh Joshi and Satish Kumar, Jensen-Tsalli’s Intuitionistic Fuzzy Divergence Measure and Its Applications in Medical Analysis and Pattern Recognition” International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 2019, 27 (1)(145-169).

 

  • Rajesh Joshi, Satish Kumar, An Intuitionistic Fuzzy Information Measure of Order-(α;β) with a  New Approach in Supplier Selection Problems using an Extended  VIKOR Method, Journal of Applied Mathematics and Computing (Springer), 2019, 60(1-2) (27-50).

 

  • Rajesh Joshi and Satish Kumar, An (R, S)-Norm Fuzzy Information Measure with Its Applications in Multiple Attribute Decision Making, Computational and Applied Mathematics (Springer), 2018, 37 (3)(2943-2964).

      

  • Rajesh Joshi, Satish Kumar, An Intuitionistic Fuzzy (δ, γ)-Norm Entropy with Its Application in Supplier Selection Problems, Computational and Applied Mathematics (Springer)2018, 37(5)(5624-5649).

 

  • Rajesh Joshi, Satish Kumar, An Exponential-Jensen Fuzzy Divergence Measure with Applications in Multiple Attribute Decision Making, Mathematical Problems in Engineering (Hindawai),2018, (1563-5147).

 

  • Rajesh Joshi, Satish Kumar, A Dissimilarity Jensen-Shannon Divergence Measure for Intuitionistic Fuzzy Sets, International Journal of Intelligent Systems2018, 33(11)(2216-2235).
  • Rajesh Joshi, Satish Kumar, A new weighted (α, β)-norm information measure with application in coding theory, Physica A: Statistical Mechanics and Its Applications (Elsevier)2018510(538-551).

 

  •  Rajesh Joshi, Satish Kumar, A Novel Fuzzy Decision Making Method using entropy weights -based Weighted Correlation Coefficients, International Journal of Fuzzy Systems (Springer), 2018, 21 (1)(232-242).

 

  • Rajesh Joshi, Satish Kumar, Exponential Jensen Intuitionistic Fuzzy Divergence Measure with Applications in Medical Investigation and Pattern Recognition, Soft Computing (Springer), 2018, 23(18)(8995-9008).

 

  • Rajesh Joshi, Satish Kumar, A Dissimilarity Measure Based on Jensen-Shannon Divergence Measure, International Journal of General Systems (Taylor and Francis)201848(3)(280-301)

 

  • Rajesh Joshi, Satish Kumar, Deepak Gupta and Hans Kaur, A Jensen-α-Norm Dissimilarity Measure for Intuitionistic Fuzzy Sets and Its Applications in Multiple Attribute Decision Making, International Journal of Fuzzy Systems (Springer), 2017, 20 (4)( 1188-1202).

 

  • Rajesh Joshi and Satish Kumar, A New Exponential Fuzzy Entropy of Order (α, β) and its Applications in Multiple Attribute Decision Making, Communication in Mathematics and Statistics (Springer), 20175(2) (213-229).

 

  • Rajesh Joshi and Satish Kumar, R, S-Norm Information Measure and A Relation Between Coding Theory and Questionnaire Theory, Open Systems and Information Dynamics (World Scientific), 201623(3)(1-12).

 

  • Rajesh Joshi and Satish Kumar, Parametric (R, S)-Norm Entropy on Intuitionistic Fuzzy Sets with A New Approach in Multiple Attribute Decision Making, Fuzzy Information and Engineering (Elsevier)2017 9(2)(181-203).

 

 

  • Rajesh Joshi and Satish Kumar, Application of Interval-Valued Intuitionistic Fuzzy R-Norm Entropy in Multiple Attribute Decision Making, International Journal of Information and Management Sciences, 2017, 28(3)(233-251).

 

  • Rajesh Joshi and Satish Kumar, A New Approach in Multiple Attribute Decision Making Using R-Norm Entropy and Hamming Distance MeasureInternational Journal of Information and Management Sciences, 2016, 27(3)(253-268).

 

  • Rajesh Joshi and Satish Kumar, A New Parametric Intuitionistic Fuzzy Entropy and Its Applications in Multiple Attribute Decision Making, International Journal of Applied and Computational Mathematics (Springer)20184 (52-74).,

 

 

  • Rajesh Joshi and Satish Kumar, A New Approach in Multiple Attribute Decision Making Using Exponential Hesitant Fuzzy Entropy, International Journal of Information and Management Sciences (Tamkang University, Taiwan)202030 (4)(305-322).

 

  • Rajesh Joshi, Multi-Criteria Decision-Making based on Bi-Parametric Exponential Fuzzy Information Measures and Weighted Correlation Coefficients, Granular Computing (Springer), 2021,7(1)(49-62)

 

  • Rajesh Joshi, Satish Kumar, A Novel VIKOR Approach based on Weighted Correlation Coefficients and Picture Fuzzy Information for Multicriteria Decision Making, Granular Computing (Springer), 2022, 7(2)(323-336)

 

 

  • Rajesh Joshi, Multi-Criteria Decision-Making Based on Novel Fuzzy Knowledge Measures, Granular Computing (Springer) (SCOPUS), 2022

 

  • R. R. Sinha and Vinod Kumar, Generalized estimators for population mean with sub sampling the non-respondents, Aligarh Journal of Statistics, India, 2011, 31 (53-62).

 

 

  • R. R. Sinha and Vinod Kumar, Estimation of Population Mean Using Mean Square Error By Double Sampling The Non- Respondents, Elixir Statistics, 2012, 51(10881-10885).

 

 

  • R. R. Sinha and Vinod Kumar, Improved Estimators For Population Mean Using Attributes And Auxiliary Characters Under Incomplete Information, International Journal of Mathematics and Statistics, 2013, 14(2) (43-54).

 

  • R. R. Sinha and Vinod Kumar, Improved Classes Of Estimators For Population Mean Using Attribute And Mean Of Auxiliary Character Under Double Sampling The Non-Respondents, National Academy Science Letters, Springer, 2014, 37(1)(72-79).

 

  • R. R. Sinha and Vinod Kumar, Estimation of Mean Using Double Sampling The Non-Respondents With Known And Unknown Variance, International Journal of Computing Science and Mathematics, 2015, 6(5)(442-458).

 

  • R. R. Sinha and Vinod Kumar, Family of Estimators For Finite Population Variance Using Auxiliary Character Under Double Sampling The Non-Respondents, National Academy Science Letters, Springer, 2015, 38 (6).

 

 

  • R. R. Sinha and Vinod Kumar, Regression Cum Exponential Estimators For Finite Population Mean Under Incomplete Information, Journal of Statistics and Management Systems (Taylor and Francis), 2017, 20(335-368).

 

  • R. R. Sinha and Vinod Kumar, Improved Estimation of Variance Under Complete And Incomplete Information, Revista Investigacion Operacional, 2021, 42(1)(1-8).

 

  • R. Kumar, S. Kaushal and Arun Kochar, Response of impedance parameters on waves in   the micropolar thermoelastic medium under modified Green-Lindsay theory, Journal of Applied Mathematics and Mechanics, 2022, 102(9).

 

  • Sarika Verma, S. Gupta, S. Singh, Bounds of Hankel Determinant for a class of univalent functions. Int. J. of Mathematics and Mathematical Sci., Volume 2012, 1-10, 2012. http://dx.doi.org/10.1155/2012/147842

 

  • Sarika Verma, S. Gupta, S. Singh, On an Integral Transform of a class of analytic functions.Abstract and Applied Analysis, Volume 2012, 1-10, 2012. http://dx.doi.org/10.1155/2012/259054

 

 

 

 

 

 

  • D. Thomas, Sarika Verma, On the Second Hankel Determinant of some Analytic Functions. Journal of Quality Measurement and Analysis. 11(2), 11-16, 2015. http://journalarticle.ukm.my/9732/

 

 

 

  • Ajay Kumar and C. Kumar, “Alexander duals of Multipermutohedron Ideals”, Proc. Indian Acad. Sci. (Math. Sci.), ( , .
  • Ajay Kumar and C. Kumar, “Certain variants of Multipermutohedron Ideals”, Proc. Indian Acad. Sci. (Math. Sci.), ( , .
  • Ajay Kumar and C. Kumar, “Some integer sequences and standard monomials”, Ganita, 67 (
  • Ajay Kumar and C. Kumar, “An integer sequence and standard monomials”, Journal of Algebra and its Applications, (  pages). https://doi.org/10.1142/S0219498818500378
  • Ajay Kumar and C. Kumar, “Monomial ideals induced by permutations avoiding patterns”, Proc. Indian Acad. Sci. (Math. Sci.), (accepted). 
  • K. Tomar and Suraj Goyal (2013). Elastic waves in swelling porous media, Transport in porous media, 100(1), 39--68. Publisher- Springer,Country- Netherlands.
  • Suraj Goyal and S.K. Tomar (2013). Rayleigh waves in a swelling porous half-space, ACOUSTICS 2013 NEW DELHI, pp-829-834, November 10-15, 2013, New Delhi, India.

Organizer and PublisherCSIR-National Physical Laboratory (NPL), Acoustical Society of India (ASI) and the French Acoustical Society (SFA)

  • Suraj Goyal and S.K. Tomar (2015). Reflection and Transmission of Inhomogeneous Waves at the Plane Interface between two Dissimilar Swelling Porous Half-Spaces, Special Topics & Reviews in Porous Media: An International Journal}, 6(1), 51--69. Publisher- Begel House Inc., Country-
  • Suraj Goyal and S.K. Tomar (2015). Reflection/Refraction of a Dilatational Wave at a Plane Interface Between Uniform Elastic and Swelling Porous Half-Spaces, Transport in porous media, 109(3), 609--632. Publisher- Springer,Country- Netherlands.
  • Suraj Goyal, Dilbag Singh and S.K. Tomar (2016). Rayleigh-Type surface waves in a swelling porous half-space, Transport in porous media, 113(1), 91--109. Publisher- Springer,Country- Netherlands.

 

  • J R. Sharma, H.Arora, Efficient higher order derivative-free multipoint methods with and without memory for systems of nonlinear equations, International Journal of Computer Mathematics, 95, 920-938, 2018.
  • R. Sharma, H.Arora, Some novel optimal eighth order derivative-free root solvers and their basins of attraction, Applied Mathematics and Computation, 284, 149-161, 2016.
  • R. Sharma, H.Arora, Efficient derivative-free numerical methods for solving systems of nonlinear equations, Computational and Applied Mathematics, 35, 269-284, 2016.
  • R. Sharma, H.Arora, A new family of optimal eighth order methods with dynamics for nonlinear equations, Applied Mathematics and Computation, 273, 924-933, 2016.
  • R. Sharma, H.Arora, An efficient family of weighted-Newton methods with optimal eighth order convergence, Applied Mathematics Letters, 29, 1-6, 2014.
  • R. Sharma, H.Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations, CALCOLO, 51, 193-210, 2014.
  • R. Sharma, H.Arora, A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numerical Algorithms, 67, 917-933, 2014.
  • R. Sharma, H.Arora, M.S. Petkovic, An efficient derivative free family of fourth order methods for solving systems of nonlinear equations, Applied Mathematics and Computation, 235, 383-393, 2014.
  • R. Sharma, H.Arora, An efficient derivative free iterative method for solving systems of nonlinear equations, Applicable Analysis and Discrete Mathematics, 7, 390-403, 2013.
  • R. Sharma, H.Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations,
  • Applied Mathematics and Computation, 222, 497-506, 2013.
  • R. Sharma, H.Arora, Improved Newton-like methods for solving systems of nonlinear equations, SeMA Journal, 74, 147-163, 2017.
  • R. Sharma, H.Arora, A simple yet efficient derivative free family of seventh order methods for systems of nonlinear equations, SeMA Journal, 73, 59-75, 2017.
  • R. Sharma, H.Arora, Some efficient two-point iterative methods with memory for solving nonlinear equations, Journal of Combinatorics, Information & System Sciences, 38, 163-181, 2013.

 

 

  • D. Grover and R. K. Seth (2018) “Viscothermoelastic Micro-Scale Beam Resonators Based On Dual-Phase Lagging Model” Microsystem Technologies 24 1667-1672.
  • D. Grover (2015)“Damping in thin circular viscothermoelastic plate resonators”Canadian Journal of Physics93 1597-1605.
  • Grover (2013) “Transverse vibrations in micro-scale viscothermoelastic beam resonators” Archive of Applied Mechanics 83 303-314.
  • J. N. Sharma, D. Grover and A. L. Sangal (2013) “Viscothermoelastic Waves- A Statistical Study”Journal of Vibration and Control19(8),1216-1226.
  • Grover (2012) “Viscothermoelastic vibrations in micro-scale beam resonators with linearly varying thickness” Canadian Journal of Physics90 487-496.
  • Grover, Virendra Kumar and Dinkar Sharma (2012) “A Comparative study of numerical techniques and homotopy perturbation method for solving parabolic equation and non-linear equations”. International Journal for Computational Methods in Engineering & Mechanics13, 403-407.
  • D. Grover and J. N. Sharma (2012) Transverse Vibrations in Piezothermoelastic Beam Resonators” Journal of Intelligent Material System and Structure 23, 77-84.
  • J. N. Sharma and D. Grover (2012) “Thermoelastic Vibration Analysis of Mems/Nems Plate Resonators with Voids”Acta Mechanica 223,167-187.
  • Varun, Naveen Sharma, I.K. Bhat and D. Grover (2011) “Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique” Solar Energy 85 2331-2337.
  • J. N. Sharma and D. Grover (2011) “Thermoelastic vibration in micro-/nano-scale beam resonators with voids”.Journal of Sound and Vibration 330, 2964-2977.
  • J. N. Sharma, D. Grover and D. Kaur (2011) “Mathematical modelling and analysis of bulk waves in rotating generalized thermoelastic media with voids”. Applied Mathematical Modelling35, 3396-3407.
  • N. Sharma, D. Grover and A. L. Sangal (2010) “Mathematical modelling of waves in rotating transversely isotropic thermoelastic media”.International Journal of Applied Mathematics and Mechanics 6, 78-103.
  • N. Sharma and D. Grover (2009) “Body wave Propagation in rotating thermoelastic media”. Mechanics Research Communications36, 715-721.

 

 

Avtar Chand, R.K. Mishra, Phase Transition in Cosmology with Magnetic Field, AIP Conference Proceedings1675, 030104 (2015); doi: 10.1063/1.4929320

  • Avtar Chand, R.K. Mishra, Dark Energy Cosmological Models in Brans-Dicke Theory of Gravity, IJETMAS3, 36 (2015)
  • Avtar Chand, R.K. Mishra and Anirudh Pradhan, FRW Cosmological Models in Brans-Dicke Theory of Gravity with Variable q and Dynamical -Term, Space Sci.361, 81 (1-12) (2016)
  • K. Mishra, Avtar Chand and Anirudh Pradhan, Dark Energy Models in Theory with Variable Deceleration Parameter, Int. J. Theor. Phys. 55, 1241 (2016)
  • K. Mishra, Avtar Chand, Cosmological Models in Alternative Theory of Gravity with Bilinear Deceleration Parameter, Astrophys Space Sci., 361(8) (2016)
  • Avtar Chand,K. Mishra, Bianchi-III Cosmological Models in Saez-Ballester Theory of Gravity with Bilinear q, Journal of International Acd. Physical Sci20(40) 257 (2016)
  • K. Mishra, Avtar Chand, String Cosmological Models with Modified Theory of Gravity under Magnetic Field, Journal of Computational Mathematics and Applied Mathematics2,1-10 (2017)
  • K. Mishra, Avtar Chand, A Comparative Study of Cosmological Models in Alternative Theory of Gravity with LVDP & BVDP, Astrophys. Space Sci.,362 (140) 1-11 (2017)

 

 

 

Dr. Sarika Verma

  • S. Verma, S. Gupta, S. Singh, Bounds of Hankel Determinant for a class of univalent functions. Int. J. of Mathematics and Mathematical Sci., Volume 2012, 1-10, 2012. http://dx.doi.org/10.1155/2012/147842

 

 

 

 

 

 

 

  • D. Thomas, S. Verma, On the Second Hankel Determinant of some Analytic Functions. Journal of Quality Measurement and Analysis. 11(2), 11-16, 2015. http://journalarticle.ukm.my/9732/

 

 

 

 

Dr. Raj Garg

 

  • Kumar and Jay M Jahangiri, Close-to-convexity of Convolutions of Classes of Harmonic Functions. International Journal of Mathematics and Mathematical Sciences (Accepted) 2018.
  • Kumar, M. Dorff, S. Gupta, S. Singh, Convolution Properties of some harmonic mappings in the right-half plane. Bulletin of The Malaysian Mathematical Sciences Society, 39(1), 439-455, 2016. http://link.springer.com/article/10.1007%2Fs40840-015-0184-3.
  • Kumar, S. Gupta, S, Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis. Bulletin of The Malaysian Mathematical Sciences Society 39(2), 751-763, 2016. http://link.springer.com/article/10.1007%2Fs40840-015-0190-5
  • Kumar, S. Gupta, S. Singh, M. Dorff, An application of Cohn's rule to the convolutions of univalent harmonic functions. Rocky Mountain Journal of Mathematics 46(2), 559-570,2016. https://projecteuclid.org/euclid.rmjm/1428419355.
  • Kumar, S. Gupta, S. Singh, M. Dorff, On harmonic convolutions involving a vertical strip mapping. Bulletin of The Korean Mathematical Society, 52(1), 105-123, 2015. http://portal.koreascience.kr/article/articleresultdetail.jsp?no=E1BMAX_2015_v52n1_105.
  • Kumar, S. Gupta, S. Singh Convolution properties of a slanted right half-plane mapping. Matematicki Vesnik, 65(2),  213-221, 2013. http://www.emis.de/journals/MV/132/8.html.
  • Kumar, S. Gupta, S. Singh, A class of univalent harmonic functions defined by multiplier transformation.Revue roumaine de mathematiques pures et appliqués, 57(4),  371-382, 2012.  http://imar.ro/journals/Revue_Mathematique/volumes.html
  • Kumar, S. Gupta, S. Singh, Convolution properties of convex harmonic functions. International journal of open problems in complex analysis, 4(3), 69-77, 2012.  http://www.journals4free.com/link.jsp?l=13502325

 

 

Dr. Shelly Garg

 

  • Alexander J. Diesl, Thomas J. Dorsey, Shelly Garg, Dinesh Khurana, A note on completeness and strongly clean rings. Journal of Pure and Applied Algebra, 218, 661-665, 2014. doi:10.1016/j.jpaa.2013.08.006
  • Shelly Garg, Harpreet K. Grover, Dinesh Khurana, Perspective Rings, Journal of Algebra,415, 1-12, 2014. doi:10.1016/j.jalgebra.2013.09.055

 

 

Dr. Ajay Kumar

  • Kumar and C. Kumar, “Alexander duals of Multipermutohedron Ideals”, Proc. Indian Acad. Sci. (Math. Sci.), ( , .
  • Kumar and C. Kumar, “Certain variants of Multipermutohedron Ideals”, Proc. Indian Acad. Sci. (Math. Sci.), ( , .
  • Kumar and C. Kumar, “Some integer sequences and standard monomials”, Ganita, 67 (
  • Kumar and C. Kumar, “An integer sequence and standard monomials”, Journal of Algebra and its Applications, (  pages). https://doi.org/10.1142/S0219498818500378
  • Kumar and C. Kumar, “Monomial ideals induced by permutations avoiding patterns”, Proc. Indian Acad. Sci. (Math. Sci.), (accepted on th January

 

Dr. Suraj Goyal

 

  • K. Tomar and Suraj Goyal (2013). Elastic waves in swelling porous media, Transport in porous media, 100(1), 39--68. Publisher- Springer,Country- Netherlands.
  • Suraj Goyal and S.K. Tomar (2013). Rayleigh waves in a swelling porous half-space, ACOUSTICS 2013 NEW DELHI, pp-829-834, November 10-15, 2013, New Delhi, India.

Organizer and Publisher: CSIR-National Physical Laboratory (NPL), Acoustical Society of India (ASI) and the French Acoustical Society (SFA)

  • Suraj Goyal and S.K. Tomar (2015). Reflection and Transmission of Inhomogeneous Waves at the Plane Interface between two Dissimilar Swelling Porous Half-Spaces, Special Topics & Reviews in Porous Media: An International Journal}, 6(1), 51--69. Publisher- Begel House Inc., Country-
  • Suraj Goyal and S.K. Tomar (2015). Reflection/Refraction of a Dilatational Wave at a Plane Interface Between Uniform Elastic and Swelling Porous Half-Spaces, Transport in porous media, 109(3), 609--632. Publisher- Springer,Country- Netherlands.
  • Suraj Goyal, Dilbag Singh and S.K. Tomar (2016). Rayleigh-Type surface waves in a swelling porous half-space, Transport in porous media, 113(1), 91--109. Publisher- Springer,Country- Netherlands.

 

 

Dr. Himani Arora

  • J R. Sharma, H.Arora, Efficient higher order derivative-free multipoint methods with and without memory for systems of nonlinear equations, International Journal of Computer Mathematics, 95, 920-938, 2018.
  • R. Sharma, H.Arora, Some novel optimal eighth order derivative-free root solvers and their basins of attraction, Applied Mathematics and Computation, 284, 149-161, 2016.
  • R. Sharma, H.Arora, Efficient derivative-free numerical methods for solving systems of nonlinear equations, Computational and Applied Mathematics, 35, 269-284, 2016.
  • R. Sharma, H.Arora, A new family of optimal eighth order methods with dynamics for nonlinear equations, Applied Mathematics and Computation, 273, 924-933, 2016.
  • R. Sharma, H.Arora, An efficient family of weighted-Newton methods with optimal eighth order convergence, Applied Mathematics Letters, 29, 1-6, 2014.
  • R. Sharma, H.Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations, CALCOLO, 51, 193-210, 2014.
  • R. Sharma, H.Arora, A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numerical Algorithms, 67, 917-933, 2014.
  • R. Sharma, H.Arora, M.S. Petkovic, An efficient derivative free family of fourth order methods for solving systems of nonlinear equations, Applied Mathematics and Computation, 235, 383-393, 2014.
  • R. Sharma, H.Arora, An efficient derivative free iterative method for solving systems of nonlinear equations, Applicable Analysis and Discrete Mathematics, 7, 390-403, 2013.
  • R. Sharma, H.Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations,
  • Applied Mathematics and Computation, 222, 497-506, 2013.
  • R. Sharma, H.Arora, Improved Newton-like methods for solving systems of nonlinear equations, SeMA Journal, 74, 147-163, 2017.
  • R. Sharma, H.Arora, A simple yet efficient derivative free family of seventh order methods for systems of nonlinear equations, SeMA Journal, 73, 59-75, 2017.
  • R. Sharma, H.Arora, Some efficient two-point iterative methods with memory for solving nonlinear equations, Journal of Combinatorics, Information & System Sciences, 38, 163-181, 2013.

 

 

Dr. Deepak Grover

 

  • D. Grover and R. K. Seth (2018) “Viscothermoelastic Micro-Scale Beam Resonators Based On Dual-Phase Lagging ModelMicrosystem Technologies 24 1667-1672.
  • D. Grover (2015)“Damping in thin circular viscothermoelastic plate resonators”Canadian Journal of Physics93 1597-1605.
  • Grover (2013) “Transverse vibrations in micro-scale viscothermoelastic beam resonators” Archive of Applied Mechanics 83 303-314.
  • J. N. Sharma, D. Grover and A. L. Sangal (2013) “Viscothermoelastic Waves- A Statistical Study”Journal of Vibration and Control19(8),1216-1226.
  • Grover (2012) “Viscothermoelastic vibrations in micro-scale beam resonators with linearly varying thickness” Canadian Journal of Physics90 487-496.
  • Grover, Virendra Kumar and Dinkar Sharma (2012) “A Comparative study of numerical techniques and homotopy perturbation method for solving parabolic equation and non-linear equations”. International Journal for Computational Methods in Engineering & Mechanics13, 403-407.
  • D. Grover and J. N. Sharma (2012) Transverse Vibrations in Piezothermoelastic Beam ResonatorsJournal of Intelligent Material System and Structure 23, 77-84.
  • J. N. Sharma and D. Grover (2012)Thermoelastic Vibration Analysis of Mems/Nems Plate Resonators with Voids”Acta Mechanica 223,167-187.
  • Varun, Naveen Sharma, I.K. Bhat and D. Grover (2011) “Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique” Solar Energy 85 2331-2337.
  • J. N. Sharma and D. Grover (2011) “Thermoelastic vibration in micro-/nano-scale beam resonators with voids”.Journal of Sound and Vibration 330, 2964-2977.
  • J. N. Sharma, D. Grover and D. Kaur (2011) “Mathematical modelling and analysis of bulk waves in rotating generalized thermoelastic media with voids”. Applied Mathematical Modelling35, 3396-3407.
  • N. Sharma, D. Grover and A. L. Sangal (2010) “Mathematical modelling of waves in rotating transversely isotropic thermoelastic media”.International Journal of Applied Mathematics and Mechanics 6, 78-103.
  • N. Sharma and D. Grover (2009) “Body wave Propagation in rotating thermoelastic media”. Mechanics Research Communications36, 715-721.

Mr. Avtar Chand

 

Avtar Chand, R.K. Mishra, Phase Transition in Cosmology with Magnetic Field, AIP Conference Proceedings1675, 030104 (2015); doi: 10.1063/1.4929320

  • Avtar Chand, R.K. Mishra, Dark Energy Cosmological Models in Brans-Dicke Theory of Gravity, IJETMAS, 3, 36 (2015)
  • Avtar Chand, R.K. Mishra and Anirudh Pradhan, FRW Cosmological Models in Brans-Dicke Theory of Gravity with Variable q and Dynamical -Term, Space Sci., 361, 81 (1-12) (2016)
  • K. Mishra, Avtar Chand and Anirudh Pradhan, Dark Energy Models in Theory with Variable Deceleration Parameter, Int. J. Theor. Phys. 55, 1241 (2016)
  • K. Mishra, Avtar Chand, Cosmological Models in Alternative Theory of Gravity with Bilinear Deceleration Parameter, Astrophys Space Sci., 361(8) (2016)
  • Avtar Chand,K. Mishra, Bianchi-III Cosmological Models in Saez-Ballester Theory of Gravity with Bilinear q, Journal of International Acd. Physical Sci. 20(40) 257 (2016)
  • K. Mishra, Avtar Chand, String Cosmological Models with Modified Theory of Gravity under Magnetic Field, Journal of Computational Mathematics and Applied Mathematics, 2,1-10 (2017)
  • K. Mishra, Avtar Chand, A Comparative Study of Cosmological Models in Alternative Theory of Gravity with LVDP & BVDP, Astrophys. Space Sci.,362 (140) 1-11 (2017)
f