Department of Mathematics Research Publications

Research Publications

  • Om. P. Ahuja, A. Centinkya and Raj Kumar, Partial sums of generalized harmonic starlike univalent functions generated by (p,q)-Ruschweyh-type harmonic differential operator.Applied Mathematics-A journal of Chinese University, 2022 (Accepted)
  • S. Verma, Raj Kumar and G. Murugusundramoorthy, A generalized class of a univalent harmonic mappings associated with a multiplier transformation. TWMS J. App. Eng. Math, 2022 (Accepted)
  • S. Verma, Raj Kumar and J. Sokol, A conjecture on Marx –Strohhacker type inclusion relation between q-convex and q-starlike functions. Bulletin des Sciences Mathematiques, 174, 2022, ID 103088.
  • D. Khurana, Raj Kumar, S. Gupta and S. Singh, Linear Combinations of Univalent Harmonic Mappings With Complex Coefficients. Mathematicki Vesnik, 74(3), 189-196, 2022.
  • Raj Kumar, M. Dorff and Jay M. Jahangiri,       Directional convexity of convolutions of harmonic functions with certain dilatations. Computational Methods and Function theory, 22, 519–534, 2022.
  • Raj Kumar and S. Verma, On construction and convolution properties of univalent harmonic mappings. Bulletin of Iranian Mathematical Society, 48, 1539–1552, 2022.
  • D. Khurana, Raj Kumar, S. Verma, A generalized class of a univalent harmonic mappings associated with a multiplier transformation. Sahand Communications in Mathematical Analysis 18(3), 27-39, 2021.
  • D. Khurana, Raj Kumar and S. Yalcin, A Class Of Harmonic Starlike Functions Defined By Multiplier Transformation. Advances in Mathematics:  Scientific Journal 9, 455-469, 2020.
  • S. Verma, D. Khurana and Raj Kumar, A class of harmonic functions associated with a generalized differential operator. Publications De L’institut Mathématique, 108 (122), 145-154, 2020.
  • Raj Kumar and Jay M Jahangiri, Close-to-convexity of Convolutions of Classes of Harmonic Functions. International Journal of Mathematics and Mathematical Sciences, 2018 ID 3808513
  • Raj Kumar, M. Dorff, S. Gupta, S. Singh, Convolution Properties of some harmonic mappings in the right-half plane. Bulletin of The Malaysian Mathematical Sciences Society, 39(1), 439-455, 2016.                                                            
  • Raj Kumar, S. Gupta, S, Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis. Bulletin of The Malaysian Mathematical Sciences Society 39(2), 751-763, 2016.
  • Raj Kumar, S. Gupta, S. Singh, M. Dorff, An application of Cohn's rule to the convolutions of univalent harmonic functions. Rocky Mountain Journal of Mathematics 46(2), 559-570,2016.
  • Raj Kumar, S. Gupta, S. Singh, M. Dorff, On harmonic convolutions involving a vertical strip mapping. Bulletin of The Korean Mathematical Society, 52(1), 105-123, 2015.
  • Raj Kumar, S. Gupta, S. Singh Convolution properties of a slanted right half-plane mapping. Matematicki Vesnik, 65(2),  213-221, 2013.
  • Raj Kumar, S. Gupta, S. Singh, A class of univalent harmonic functions defined by multiplier transformation.Revue roumaine de mathematiques pures et appliqués, 57(4),  371-382, 2012.
  • Raj Kumar, S. Gupta, S. Singh, Convolution properties of convex harmonic functions. International journal of open problems in complex analysis, 4(3), 69-77, 2012.  
  • Alexander J. Diesl, Thomas J. Dorsey, Shelly Garg,Dinesh Khurana, A note on completeness and strongly clean rings. Journal of Pure and Applied Algebra, 218, 661-665, 2014. 
  • Shelly Garg, Harpreet K. Grover, Dinesh Khurana, Perspective Rings, Journal of Algebra,415, 1-12, 2014. 
  • Singh, J. K. Rajput, N. Dogra, G. Jain, A. GuptaShelly Garg, A novel sucrose chelated visible-light sensitive AFO NPs: preparation, characterization, photocatalytic activity, and reaction mechanism, Journal of the Australian Ceramic Society, 57, 835-848, 2021.
  • GuptaShelly Garg, H. Singh, Development of chalcone-based derivatives for sensing applications, Analytical Methods, 12, 5022-5045, 2020.
  • Ankush Gupta, Akshay Kumar, Nidhi Choudhary, Bharti Gupta, Harminder Singh, Naresh Kumar andShelly Garg, ‘Synthesis, Characterization, and Application of Chalcone Derivatives as Chemosensors for Cyanide Anions’, Current Chinese Chemistry, 2021, 2 (43-52).
  • Harpreet K. Grover, Sumati Priya, Ravi Mittal and Shelly Garg*, ‘A Note on J-Symmetric Rings’, Science and Technology Journal, 2022, 10 (74-77).
  • Harpreet K Grover, T.D.Narang, Shelly Garg *, ‘Strict Convexity and Betweenness’, Southeast Asian Bulletin of Mathematics, 2024, 48(61-68).
  • Shelly Garg, Harpreet K Grover, T.D.Narang, ‘Rotundity of Quotient Spaces in Metric Linear Spaces’, Iranian Journal of Mathematical Sciences and Informatics, 2024, 19 (119-126).
  • Harpreet K Grover, T.D.Narang, Shelly Garg*, ‘Different Forms of Convexity in Metric Linear Spaces’, Electronic Journal of Mathematical Analysis and Applications, 2025, 13(1-11).
  • Harpreet K. Grover, Shelly Garg*, T.D.Narang, ‘On Uniform Convexity of Linear Metric Spaces’, Ukrainian Mathematical Journal, to appear
  • Rajesh Joshi, A Novel Decision-Making Method Using R-Norm Concept and VIKOR Approach Under Picture Fuzzy Environment, Experts Systems with Applications (Elsevier), 2020, 147 (113228).
  • Rajesh Joshi, A New Picture Fuzzy Information Measure based on Tsallis-Havdra-Charavat Concept with Applications in Presaging Poll Outcome, Computational and Applied Mathematics (Springer), 2020, 39(2) (21-24).
  • Rajesh Joshi, A New Multi-Criteria Decision-Making Method based on Intuitionistic Fuzzy Information and Its Application to Fault Detection in a Machine, Journal of Ambient Intelligence and Humanized Computing (Springer), 2019, 11(2) (739-753).
  • Rajesh Joshi and Satish Kumar, Jensen-Tsalli’s Intuitionistic Fuzzy Divergence Measure and Its Applications in Medical Analysis and Pattern Recognition” International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 2019, 27 (1)(145-169).
  • Rajesh Joshi, Satish Kumar, An Intuitionistic Fuzzy Information Measure of Order-(α;β) with a  New Approach in Supplier Selection Problems using an Extended  VIKOR Method, Journal of Applied Mathematics and Computing (Springer), 2019, 60(1-2) (27-50).
  • Rajesh Joshi and Satish Kumar, An (R, S)-Norm Fuzzy Information Measure with Its Applications in Multiple Attribute Decision Making, Computational and Applied Mathematics (Springer), 2018, 37 (3)(2943-2964).
  • Rajesh Joshi, Satish Kumar, An Intuitionistic Fuzzy (δ, γ)-Norm Entropy with Its Application in Supplier Selection Problems, Computational and Applied Mathematics (Springer)2018, 37(5)(5624-5649).
  • Rajesh Joshi, Satish Kumar, An Exponential-Jensen Fuzzy Divergence Measure with Applications in Multiple Attribute Decision Making, Mathematical Problems in Engineering (Hindawai),2018, (1563-5147).
  • Rajesh Joshi, Satish Kumar, A Dissimilarity Jensen-Shannon Divergence Measure for Intuitionistic Fuzzy Sets, International Journal of Intelligent Systems2018, 33(11)(2216-2235).
  • Rajesh Joshi, Satish Kumar, A new weighted (α, β)-norm information measure with application in coding theory, Physica A: Statistical Mechanics and Its Applications (Elsevier)2018510(538-551).
  •  Rajesh Joshi, Satish Kumar, A Novel Fuzzy Decision Making Method using entropy weights -based Weighted Correlation Coefficients, International Journal of Fuzzy Systems (Springer), 2018, 21 (1)(232-242).
  • Rajesh Joshi, Satish Kumar, Exponential Jensen Intuitionistic Fuzzy Divergence Measure with Applications in Medical Investigation and Pattern Recognition, Soft Computing (Springer), 2018, 23(18)(8995-9008).
  • Rajesh Joshi, Satish Kumar, A Dissimilarity Measure Based on Jensen-Shannon Divergence Measure, International Journal of General Systems (Taylor and Francis)201848(3)(280-301)
  • Rajesh Joshi, Satish Kumar, Deepak Gupta and Hans Kaur, A Jensen-α-Norm Dissimilarity Measure for Intuitionistic Fuzzy Sets and Its Applications in Multiple Attribute Decision Making, International Journal of Fuzzy Systems (Springer), 2017, 20 (4)( 1188-1202).
  • Rajesh Joshi and Satish Kumar, A New Exponential Fuzzy Entropy of Order (α, β) and its Applications in Multiple Attribute Decision Making, Communication in Mathematics and Statistics (Springer), 20175(2) (213-229).
  • Rajesh Joshi and Satish Kumar, R, S-Norm Information Measure and A Relation Between Coding Theory and Questionnaire Theory, Open Systems and Information Dynamics (World Scientific), 201623(3)(1-12).
  • Rajesh Joshi and Satish Kumar, Parametric (R, S)-Norm Entropy on Intuitionistic Fuzzy Sets with A New Approach in Multiple Attribute Decision Making, Fuzzy Information and Engineering (Elsevier)2017 9(2)(181-203).
  • Rajesh Joshi and Satish Kumar, Application of Interval-Valued Intuitionistic Fuzzy R-Norm Entropy in Multiple Attribute Decision Making, International Journal of Information and Management Sciences, 2017, 28(3)(233-251).
  • Rajesh Joshi and Satish Kumar, A New Approach in Multiple Attribute Decision Making Using R-Norm Entropy and Hamming Distance MeasureInternational Journal of Information and Management Sciences, 2016, 27(3)(253-268).
  • Rajesh Joshi and Satish Kumar, A New Parametric Intuitionistic Fuzzy Entropy and Its Applications in Multiple Attribute Decision Making, International Journal of Applied and Computational Mathematics (Springer)20184 (52-74).,
  • Rajesh Joshi and Satish Kumar, A New Approach in Multiple Attribute Decision Making Using Exponential Hesitant Fuzzy Entropy, International Journal of Information and Management Sciences (Tamkang University, Taiwan)202030 (4)(305-322).
  • Rajesh Joshi, Multi-Criteria Decision-Making based on Bi-Parametric Exponential Fuzzy Information Measures and Weighted Correlation Coefficients, Granular Computing (Springer), 2021,7(1)(49-62)
  • Rajesh Joshi, Satish Kumar, A Novel VIKOR Approach based on Weighted Correlation Coefficients and Picture Fuzzy Information for Multicriteria Decision Making, Granular Computing (Springer), 2022, 7(2)(323-336)
  • Rajesh Joshi, Multi-Criteria Decision-Making Based on Novel Fuzzy Knowledge Measures, Granular Computing (Springer) (SCOPUS), 2022
  • R. R. Sinha and Vinod Kumar, Generalized estimators for population mean with sub sampling the non-respondents, Aligarh Journal of Statistics, India, 2011, 31 (53-62).
  • R. R. Sinha and Vinod Kumar, Estimation of Population Mean Using Mean Square Error By Double Sampling The Non- Respondents, Elixir Statistics, 2012, 51(10881-10885).
  • R. R. Sinha and Vinod Kumar, Improved Estimators For Population Mean Using Attributes And Auxiliary Characters Under Incomplete Information, International Journal of Mathematics and Statistics, 2013, 14(2) (43-54).
  • R. R. Sinha and Vinod Kumar, Improved Classes Of Estimators For Population Mean Using Attribute And Mean Of Auxiliary Character Under Double Sampling The Non-Respondents, National Academy Science Letters, Springer, 2014, 37(1)(72-79).
  • R. R. Sinha and Vinod Kumar, Estimation of Mean Using Double Sampling The Non-Respondents With Known And Unknown Variance, International Journal of Computing Science and Mathematics, 2015, 6(5)(442-458).
  • R. R. Sinha and Vinod Kumar, Family of Estimators For Finite Population Variance Using Auxiliary Character Under Double Sampling The Non-Respondents, National Academy Science Letters, Springer, 2015, 38 (6).
  • R. R. Sinha and Vinod Kumar, Regression Cum Exponential Estimators For Finite Population Mean Under Incomplete Information, Journal of Statistics and Management Systems (Taylor and Francis), 2017, 20(335-368).
  • R. R. Sinha and Vinod Kumar, Improved Estimation of Variance Under Complete And Incomplete Information, Revista Investigacion Operacional, 2021, 42(1)(1-8).
  • R. Kumar, S. Kaushal and Arun Kochar, Response of impedance parameters on waves in   the micropolar thermoelastic medium under modified Green-Lindsay theory, Journal of Applied Mathematics and Mechanics, 2022, 102(9).
f