DAV University, Jalandhar Course Outcomes of B. Tech. in Civil Engineering SEMESTER 3

	SEMESTER 3	In	houi	'S		
		L	Т	Р	Credit	
		3	0	0	3	
Course Code	CED201					
Course Title	Building Materials & Construction Technology					
Course Outcomes	CO1: Comprehend construction materials and their properties for b CO2: Comprehend the production, characteristics, and application of concrete in construction. CO3: Explore various architectural elements including foundations,	ouildin of cem walls,	g dun nent, linte	abili aggr Is, aı	ty and stabi egates, and ches, and th	lity hei
	design principles. CO4: Gain insights into techniques for addressing dampness issues, and finishing processes like plastering and pointing.	roof a	and fl	oor	classificatior	ns,

In hours			
L	Т	Р	Credit
3	1	2	5

Course Code	CED203
Course Title	STRENGTH OF MATERIALS
Course	CO1: Comprehend stress and strain concepts, elasticity-plasticity differentiation, Hooke's law, and
Outcomes	stress-strain diagrams for various materials.
	CO2: Analyze bending moments, shear forces, and their diagrams in beams, calculating maximum
	values and points of contraflexure.
	CO3: Apply principles of flexural stresses, determining bending equations, neutral axis, and
	section moduli for different cross-sections.
	CO4: Evaluate deformation and strain, analyze statically determinate trusses, explore material
	properties, and multiaxial stress-strain relationships in structures.
Course Title	STRENGTH OF MATERIALS LABORATORY
Course	
Outcomes	CO1: Evaluate the importance of physical properties of steel , Identify and comprehend code provisions for testing different properties of steel ,Develop stress-strain curve for axial compression, axial tension and shear, Assess hardness and impact strength of steel , Assess flexural strength of a given material , Evaluate fatigue and impact strength of steel

In hours			
L	Т	Р	Credit
3	0	2	4

Course Code	CED205
Course Title	Surveying & Geomatics
Course	CO1: Develop competence in employing diverse surveying methods and principles for accurate
Outcomes	data collection and analysis.
	CO2: Apply leveling techniques, theodolite measurements, and control methods to achieve precision in surveying tasks and map creation.
	CO3: Master curve layout, modern field survey systems, and GPS technology for efficient and precise spatial data acquisition.
	CO4: Acquire proficiency in photogrammetry, remote sensing fundamentals, and digital image
	processing for spatial data interpretation and mapping.
Course Title	SURVEYING LABORATORY
Course	
Outcomes	CO1: Apply basic fundamentals of surveying in various civil engineering applications related experiments.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED207
Course Title	Environment Engineering-1
Course	CO1: Analyze water sources, demand, quality, and treatment processes, comprehend water
Outcomes	distribution systems, and comprehend plumbing fixtures.
	CO2: Evaluate sewage systems, design parameters, and disposal methods, and explain sewage
	treatment techniques and effluent standards.
	CO3: Assess air composition, quantify pollutants, examine air pollution sources, standards, and
	control methods, and describe noise pollution measurements.
	CO4: Examine solid waste types, characteristics, segregation, collection, transportation, disposal,
	and hazardous waste management in accordance with Indian norms.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED209
Course Title	Introduction to Civil Engineering
Course	CO1: Comprehend Civil Engineering's historical evolution, disciplines, and career prospects,
Outcomes	acknowledging significant achievements of eminent engineers.
	CO2: Analyze the nexus between construction industry, architecture, and town planning,
	including smart city development and sustainable building practices.
	CO3: Evaluate diverse construction methods, modern project management systems, and the
	significance of contracts management while considering environmental sustainability.
	CO4: Examine various structural types, transportation infrastructure, and rehabilitation
	techniques, addressing challenges and advancements in sustainable engineering and urban
	development.

		In hours			
		L	Т	Р	Credit
		0	0	0	2
Course Code	CED213				<u>.</u>
Course Title	Summer Internship				
Course					
Outcomes	CO1: learn soft skill training or any other MOOC course of same credit				

B. Tech. in Civil Engineering SEMESTER 4

In hours			
L	Т	Р	Credit
3	1	2	5

Course Code	CED202
Course Title	Structural Engineering-I
Course	CO1: Comprehend energy principles, stability, and design safety in structures, emphasizing
Outcomes	the role of engineers, architects, and users.
	CO2: Apply analysis techniques to trusses, beams, and frames, employing energy theorems
	and virtual work for structural systems.
	CO3: Evaluate influence lines for shear, bending moment, and reactions, and comprehend the
	behavior of structures under rolling loads.
	CO4: Analyze arches and cable structures, focusing on their stability, moment, shear, and
	normal thrust distributions for different configurations.
Course Title	Structure Engineering Lab
Course	
Outcomes	CO1: Apply various methods to test engineering structures types under different loading
	conditions.

In h	ours	;	
L	Т	Р	Credit
3	1	2	5

Course Code	CED204				
Course Title	Introduction to fluid mechanics				
Course	CO1: Analyze fluid properties & distinctions between phases, fluid behavior, viscosity, surface				
Outcomes	tension, and cavitation phenomena.				
	CO2: Examine fluid kinematics, particle motion, flow classification. Evaluate velocity,				
	streamlines, continuity equation, and potential functions.				
	CO3: Investigate fluid dynamics using Bernoulli's equation & Euler's equation. Explore				
	energy changes, impulse-momentum, vortex motion, and steady flows.				
	CO4: Apply dimensional analysis, similarity laws, and Pi method. Explore drag, lift on bodies,				
	and flow measurement techniques including manometers and meters.				
Course Title	INTRODUCTION TO FLUID MECHANICS LABORATORY				
Course					
Outcomes	CO1: Apply basic fundamentals of fluid mechanics in various applications related				
	experiments.				

In h	ours		
L	Т	Р	Credit
3	1	0	4

Course Code	CED206
Course Title	Engineering geology
Course	CO1: Explore geological time scales, earth structure, and surface processes, emphasizing their
Outcomes	relevance to Civil Engineering projects.
	CO2: Examine minerals, rocks, and their properties in connection with Civil Engineering
	applications and differentiate various rock types and their significance.
	CO3: Analyze rock deformation, structural elements, and geological hazards, emphasizing
	their impact on engineering operations and mitigation measures.
	CO4: Evaluate the characteristics of rock masses as construction materials, assess factors
	influencing rock properties, and geological considerations for dam and reservoir site
	selection.

In hours				
L	Т	Р	Credit	
3	0	2	4	

Course Code	CED208		
Course Title	Material testing and evaluation		
Course	CO1: Identify and analyze diverse engineering materials, including concrete, ceramics,		
Outcomes	polymers, and composites, focusing on properties and applications.		
	CO2: Evaluate mechanical behaviors like elasticity, plasticity, hardness, and deformation		
	through tests and principles of materials' mechanical characteristics.		
	CO3: Apply practical knowledge gained from laboratory tests on materials, covering elastic		
	and plastic deformation, impact, fracture mechanics, fatigue, and creep.		
CO4: Conduct comprehensive testing on various construction materials such as con			
	metals, polymers, and composites, assessing their quality and performance in engineering		
	applications.		
Course			
Outcomes	CO1: Apply basic material testing methods to identify various engineering properties of		
	engineering materials.		

~		In ł	iour	S		
		L	Т	Р	Credit	
		3	1	0	4]
Course Code	CED210					
Course Title	BUILDING PLANNING					

Course Title	BUILDING PLANNING
Course	CO1: Develop insight into building planning's significance and grasp fundamental concepts in
Outcomes	civil engineering design and architectural drawings.
	CO2: Analyze site selection factors, site features, and energy-efficient building orientation,
	adhering to Indian building codes and regulations.
	CO3: Comprehend functional aspects of residential, commercial, and industrial design,
	applying principles of space allocation and universal accessibility.
	CO4: Acquire knowledge of plumbing, electrical, HVAC systems, and sustainable practices,
	integrating renewable energy sources for holistic building solutions.

**		In h	our	S		
		L 3	Т 0	P 0	Credit 3	
Course Code	CED212					
Course Coue						
Course litie	Concrete Technology					
Course	CO1: Analyze cement, aggregates, and additives; comprehend IS cod	es; a	sses	s co	ncrete	
Outcomes	behavior, cracking, and durability mechanisms.					
	CO2: Demonstrate concrete production, compaction, and handling; r	nana	ige e	extre	eme	
	environments; grasp concrete mix design principles.					
	CO3: Evaluate concrete defects, deterioration; conduct strength and	dura	abili	tv te	ests; emplo	v
destructive and non-destructive concrete testing.				5	, 1	5
CO4: Differentiate special concrete types: explain reinforced polymer lighty					ht, high	
strength pre-stressed self-compacting pervious and self-bealing concretes						
	su engui, pre-su esseu, sen-compacting, per vious, and sen-nearing co	mere	162			

In	hou		
L	Τ	Р	Credit
3	1	2	5

Course code	CED301				
Course Title	GEOTECHNICAL ENGINEERING				
Course	CO1: Comprehend the different types of soil based on their formation mechanism, particle size				
Outcomes	distribution and index properties				
	CO2 : Determine the permeability of soil, its effective stress and the compactive effort required				
	to obtain necessary degree of compaction in-situ				
	CO3: Evaluate the consolidation process of soil and its difference from compaction.				
	CO4 : Evaluate the stiffness of soil using shear strength parameters				
Course Title	Geotechnical Engineering Laboratory				
Course	CO1: Evaluate fundamental soil properties and their determination techniques.				
Outcomes	CO2: Analyze and interpret soil particle characteristics and their engineering significance.				
	CO3: Gain practical knowledge of geotechnical testing methods for soil mechanics analysis.				

In	hou		
L	Τ	Р	Credit
3	0	0	3

Course Code	CED303
Course Title	HYDROLOGY AND WATER RESOURCE ENGINEERING
Course	CO1: Comprehend hydrologic processes, precipitation measurement, and water abstractions,
Outcomes	including evaporation, evapotranspiration, and infiltration.
	CO2: Learn runoff estimation, hydrograph analysis, and groundwater principles, including
	aquifer properties and well hydraulics.
	CO3: Explore water usage, irrigation methods, and crop water requirements, along with canal
	and dam design considerations.
	CO4: Gain knowledge of canal systems, dam types, their forces, failures, and site selection,
	addressing water management and engineering challenges.

×	1	
VEDAS		
PAV UNIVERSITY		

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED305
Course Title	ENGINEERING ECONOMICS, ESTIMATION & COSTING
Course	CO1: Analyze fundamental economic principles, supply-demand dynamics, market structures,
Outcomes	macroeconomic concepts, and government policies' impact.
	CO2: Develop skills in estimating, planning, and analyzing construction projects, including
	building, road, and irrigation works.
	CO3: Learn to formulate accurate cost estimates, interpret rates, and create effective
	construction specifications.
	CO4: Grasp the essentials of contracts, accounts division, and arbitration procedures within
	the context of construction management.

In	hoı		
L	Τ	Р	Credit
3	1	0	4

Course Code	CED307
Course Title	Design of Concrete Structures-I
Course	CO1: Apply design methods (LSDM, WSM) for structural elements, compute moment of
Outcomes	resistance, and analyze characteristic values.
	CO2: Analyze shear, torsion, and serviceability in structural design, ensuring safe and stable
	performance of components.
	CO3: Design singly and doubly reinforced beams, flanged beams, and slabs, considering
	various failure modes and load conditions.
	CO4: Formulate compression member designs using axial load, bending, and charts, ensuring
	stability and load-carrying capacity.

In hours			
L	Τ	Р	Credit
3	0	2	4

Course Code	CED309				
Course Title	TRANSPORTATION ENGINEERING				
Course	CO1: Comprehend transportation modes, historical road development, and highway				
Outcomes	economics for effective transportation system management.				
	CO2: Learn highway geometric design principles, aligning roads, ensuring safe sight distances,				
	and designing smooth horizontal and vertical alignments.				
	CO3: Comprehend highway materials, construction techniques, drainage importance,				
	maintenance, and pavement evaluation for durable road infrastructure.				
	CO4 Gain knowledge of pavement design, elementary traffic engineering, traffic studies, road				
	safety elements, intersections, and traffic management essentials.				
Course Title	TRANSPORTATION ENGINEERING LABORATORY				
Course	CO1: To Evaluate the mechanical properties of aggregates and their suitability for use in				
Outcomes	construction.				
	CO2: To analyze the properties of bitumen and assess its quality for road construction.				
	CO3: To assess the geometric properties of aggregates and their impact on the performance of				
	road materials.				

In hours			
L	Т	Р	Credit
0	0	0	2

Course Code	CED311
Course Title	Survey camp
Course	CO1: Students gain practical hands-on experience in applying surveying techniques, tools,
Outcomes	and equipment to real-world situations.

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED302
Course Title	Environment Engineering-II
Course	CO1: Analyze soil and groundwater contamination sources, movement of contaminants, and
Outcomes	waste containment principles.
	CO2: Comprehend groundwater contamination behavior, measurement methods, and
	remediation techniques for soil and groundwater.
	CO3: Explore hazardous waste management, solid waste disposal, engineered landfill design,
	and regulatory guidelines.
	CO4: Gain insights into waste handling criteria, disposal techniques, and practical case studies
	in environmental geo-technology.

In hours			
L T P		Credit	
3	1	0	4

Course Code	CED304
Course Title	Design of Steel Structures-I
Course	CO1: Analyze riveted, bolted, and welded connections, analyzing stresses, strengths, and
Outcomes	failures in joints for effective structural design.
	CO2: Grasp the design principles of tension and compression members, considering axial loads,
	bending, and empirical formulas.
	CO3: Learn the intricacies of column bases, foundations, and industrial building design,
	including gantry girders and column brackets.
	CO4: Acquire the skills to design plate girders and roof trusses, accounting for loads, forces,
	and joint calculations in structural systems.

In hours			
L	Τ	Р	Credit
3	1	0	4

Course Code	CED306
Course Title	Foundation Engineering
Course	CO1: Comprehend soil investigation methods, sampling techniques, and borehole logging for
Outcomes	structural design.
	CO2: Analyze earth pressure theories, stresses in soils, and influence factors for retaining walls
	and loaded areas.
	CO3: Learn about shallow foundation types, bearing capacity, settlement calculations, plate
	load tests, and SPT.
	CO4: Gain knowledge of pile foundations, caissons, and wells including types, load tests,
	stability analysis, and group behavior.

In hours			
L	Τ	Р	Credit
0	0	2	1

Course Code	CED308
Course Title	Computer Aided Drawing
Course	CO1: Produce accurate concrete and steel drawings using AutoCAD.
Outcomes	CO2: Apply design principles for efficient structural detailing.
	CO3: Create annotated plans for common building components.
	CO4: Demonstrate proficiency in interpreting architectural and engineering drawings

			hou	Irs	
*		L	T	Р	Credit
		3	1	0	4
Course Code	CED401				
Course Title	Design of Steel Structures-II				
Course	CO1: Comprehend plate girder elements, design principles, flange cu	rtailı	nent	, and	d various
Outcomes	stiffener types in structural steel systems.				
	CO2: Develop expertise in designing steel foot bridges with welded joints, parallel booms,				booms,
	wooden decking, and safe load-bearing capacities.				
	CO3: Master the design aspects of an industrial shed encompassing gantry girders, column				s, column
	brackets, bents, and bracing for stability.				
	CO4: Gain proficiency in designing single-track railway bridges, including lattice girders,				
	welded joints, girders, bracings, and bearing systems.				

In hours			
L	Τ	Р	Credit
1	0	4	3

Course Code	CED403
Course Title	Engineering Project-I
Course	CO1: Apply appropriate techniques and tools to solve complex structural problems.
Outcomes	CO2: Exhibit good communication skill to the engineering community and society.
	CO3: Demonstrate professional ethics and work culture.
	CO4: Contribute in efficient technology transfer to the society.

In	hou	rs	
L	Τ	Р	Credit
0	1	0	2

Course Code	CED405
Course Title	Software Training
Course	CO1: Apply appropriate software, techniques and tools to solve complex structural problems.
Outcomes	CO2: Exhibit good communication skill to the engineering community and society.
	CO3: Demonstrate professional ethics and work culture.
	CO4: Contribute in efficient technology transfer to the society.

*		L	Τ	Р	Credit
DAV UNIVERSITY		0	0	18	9
Course Code	CED402				
Course Title	Capstone Project /DSE				
Course	CO1: Apply appropriate techniques and tools to solve complex struct	ural	proł	olem	S.
Outcomes	CO2: Exhibit good communication skill to the engineering community	7 and	l soc	iety	
	CO3: Demonstrate professional ethics and work culture.				
	CO4: Contribute in efficient technology transfer to the society.				

DEPARTMENTAL ELECTIVES

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED350
Course Title	FOUNDATION ENGINEERING
Course	CO1: To determine the depth of exploration and method of explorations for soil investigation.
Outcomes	CO2: To determine the earth pressures and stresses in soils under different types of
	foundation loads.
	CO3: To calculate the bearing capacity of soil under shallow foundations.
	CO4: To comprehend the need of deep foundations like piles and well foundations and also to
	analyze the allowable load.

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED351
Course Title	OFFSHORE ENGINEERING
Course	CO1: Introduce offshore structures, their construction stages, constructability principles, and
Outcomes	relevant codes of practice.
	CO2: Explore offshore project management, site investigations, deep-sea construction,
	materials properties, and related considerations.
	CO3: Examine in-situ testing, geological aspects, and the development of design
	stratigraphies for offshore projects.
	CO4: Investigate methods and equipment for underwater exploration, instrumentation in soil
	engineering, and practical field visits for data collection and reporting.

In hours			
L	L T P		Credit
0	0	18	9

*	In	In hours		
	L	T	Р	Credit
DAV UNIVERSITY	3	0	0	3

Course Code	CED352
Course Title	SOIL DYNAMICS
Course	CO1: Analyze dynamic load effects and vibrations in structures, applying theory of vibrations
Outcomes	and dynamic earth pressures.
	CO2: Evaluate dynamic bearing capacity and foundations under dynamic earth pressure,
	considering shallow foundation design principles.
	CO3: Investigate wave propagation in soil, liquefaction phenomena, and compute dynamic
	soil properties for engineering applications.
	CO4: Design machine foundations for diverse machinery types, implement vibration isolation
	techniques, and comprehend vibration control strategies in engineering practice.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED353
Course Title	BIOLOGICAL PROCESSES FOR CONTAMINATS REMOVAL
Course	CO1: Analyze the various waste water constituents and also the design principles of bio
Outcomes	reactors.
	CO2: Evaluate the design process of waste water treatment systems.
	CO3: Investigate the phenomenon of aeration in the biological treatment.
	CO4: Comprehend the anaerobic processes of waste water treatment.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED354
Course Title	ENVIRONMENT LAWS AND POLICIES
Course	CO1: Analyze the Indian legal system, judiciary, and environmental law principles including
Outcomes	precautionary and sustainable development.
	CO2: Evaluate wildlife and biodiversity laws, their evolution, and statutory frameworks,
	including the Biological Diversity Act and Forest Rights Act.
	CO3: Examine air, water, and marine laws, covering pollution prevention, water
	management, judicial remedies, and coastal zone regulations.
	CO4: Appraise the Environment (Protection) Act 1986, its genesis, powers delegation, EIA
	notification, waste management, and roles of stakeholders.

*	In hou	In hours	
VIDA		Р	Credit
DAV UNIVERSITY	3 0	0	3

Course Code	CED355
Course Title	ENVIRONMENT IMPACT ASSESSMENT AND LIFE CYCLE ANALYSIS
Course	CO1: Acquire comprehension of the principles, process and the necessary techniques foe EIA.
Outcomes	CO2: Assess the environment impact of the proposed project on the surrounding environment
	with the help of different EIA Tools.
	CO3: Identify, predict and evaluate the economic, environmental and social impact of
	developmental activities.
	CO4: Promote sound and sustainable development through LCA and the identification of
	appropriate alternatives and mitigation measures.

In	hou		
L T P		Р	Credit
3	0	0	3

Course Code	CED356				
Course Title	INTELLIGENT TRANSPORTATION SYSTEMS				
Course	CO1: Define ITS and its objectives, trace historical development, and elucidate benefits and				
Outcomes	data collection techniques.				
	CO2: Explain the significance of telecommunications in ITS, explore TMCs, and analyze				
	vehicle-roadside communication and positioning systems.				
	CO3: Explore various ITS functional areas like ATMS, ATIS, CVO, AVCS, APTS, ARTS, and				
	analyze user needs and services.				
	CO4: Examine advanced vehicle safety systems, Information Management, Automated				
	Highway Systems, and global ITS implementations and trends.				

*	In hours		
		Credit	
DAY UNIVERSITY	3 0 0	3	

Course Code	CED357		
Course Title	RAILWAY AND AIRPORT ENGINEERING		
Course	CO1: Comprehend permanent way components and technicalities of rails.		
Outcomes	CO2: Design the geometry of railway track and explain the types and functions of sleepers and		
	ballast.		
	CO3: Know the necessity and functionality of points and crossings along with signaling and		
	interlocking.		
	CO4: Analyze different components and laws governing the site selection of airport and also to		
	design various components of airport.		

In	hou		
L T P			Credit
3	0	0	3

Course Code	CED358
Course Title	TRANSPORTATION ECONOMICS
Course	CO1: Develop skills in transportation project development, budgeting, and financial planning
Outcomes	for effective decision-making in transportation projects.
	CO2: Analyze transportation costs, user costs, and cost functions, and assess road pricing
	strategies for efficient transportation systems.
	CO3: Evaluate vehicle operating costs, economic impact of congestion, and apply economic
	analysis methods to transportation projects for informed decision-making.
	CO4: Examine indirect costs/benefits, financing methods, PPP, risk analysis, and real-world
	case studies for road project viability assessment.

*	In	hou		
	L	T	Р	Credit
AND TO STATE	3	0	0	3

Course Code	CED359
Course Title	INDUSTRIAL STRUCTURES
Course	CO1: Analyze the planning and functional requirements of Industrial steel structures like
utcomes	crane girders, communication towers etc.
	CO2: Learn the design of chimneys by considering all the forces like earthquake, wind load and
	temperature effect etc.
	CO3: Design the Silos and bunkers by various theories.
	CO4: Evaluate the design of shell structures and machine foundation design.

*]	In ho	ırs	
	L	T	P	Credit
And Discourses	3	0	0	3

Course Code	CED360		
Course Title	EARTHQUAKE RESISTANCE DESIGN		
Course	CO1: Analyze seismic principles, damage patterns, and design criteria for reliable earthquake-		
Outcomes	resistant structures with diverse structural forms.		
	CO2: Apply lateral load analysis methods, seismic force estimation, and response spectrum		
	analysis to ensure seismic stability in structures.		
	CO3: Evaluate seismic behavior and design aspects of concrete, steel, and masonry structures		
	in adherence to relevant code provisions (IS 4326, IS 13920).		
	CO4: Execute seismic design, detailing, and reinforcement techniques for reinforced concrete		
	and masonry structures, emphasizing flexural strength, ductility, and joint performance.		

In	ho		
L	T	Р	Credit
3	0	0	3

*	L T P Credit		
AU UNIVERSITY			
Course Code	CED361		
Course Title	STRUCTURAL DYNAMICS		
Course	CO1: Analyze dynamic loading and idealize structures for free and forced vibrations,		
Outcomes	including damping effects.		
	CO2: Formulate equations of motion, solve for free vibrations of single degree of freedom systems using stiffness methods.		
	CO3: Examine damped vibrations, identify damping types, and analyze critically-damped and under-damped systems, considering logarithmic decrement.		
	CO4: Evaluate structural earthquake response, focusing on behavior of Concrete and Steel structures under varying loadings.		

Course Code	CED362
Course Title	RELAIBILITY ANALYSIS OF STRUCTURES
Course	CO1: Analyze structural safety concepts, design methods, and basic statistics for engineering
Outcomes	applications.
	CO2: Assess resistance distributions, probabilistic load analysis, and basic structural reliability
	methods for practical engineering design.
	CO3: Apply Monte Carlo simulation, Level 2 reliability methods, and reliability-based design in
	complex structural engineering scenarios.
	CO4: Evaluate reliability-based design criteria, safety factors, and their application to structural
	systems conforming to Indian standards.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED363
Course Title	PRE-STRESSED CONCRETE
Course	CO1: Analyze materials & systems for pre-stressed concrete. Examine high strength concrete,
Outcomes	tensile steel, & pre-stressing methods.
	CO2: Evaluate prestress effects & stresses. Analyze bending stresses, load balancing, loss of
	prestress & beam deflection in structures.
	CO3: Assess strength in flexure, shear & torsion. Apply strain compatibility, IS: 1343 code, &
	limit state design to prestressed sections.
	CO4: Design prestressed beams & slabs. Develop transfer methods, anchorage reinforcement,
	cable profiles & slabs in various configurations.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED364		
Course Title	DESIGN OF STRUCTURAL SYSTEMS		
Course	CO1: Develop skills in structural planning, material selection, and design criteria formulation		
Outcomes	in construction processes.		
CO2: Apply knowledge of loads, safety, and functional requirements to choose op			
	structural schemes effectively.		
	CO3: Utilize computer-aided tools for preliminary design and proportioning, incorporating		
	formulated design criteria.		
	CO4: Analyze structural response, cost, and value to make informed decisions in the		
	construction and design field.		

In hours			
L	Т	P	Credit
3	0	0	3

Course Code	CED450			
Course Title	MASONARY STRUCTURES			
Course	CO1: Analyze masonry materials and construction, including defects and errors, to ensure			
Outcomes	structural integrity and quality.			
	CO2: Apply stress analysis techniques to determine permissible stresses and design			
	considerations for different masonry wall types.			
	CO3: Evaluate load considerations and design masonry walls under various axial load			
	scenarios, including walls with openings and supports.			
	CO4: Formulate designs for masonry walls exposed to concentrated axial and eccentric loads,			
	ensuring stability and load distribution.			

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED451
Course Title	SUSTAINABLE CONSTRUCTION METHODS
Course	CO1: Explore sustainability principles, environmental challenges, global warming, and green
Outcomes	building concepts for sustainable urban development.
	CO2: Examine energy conservation, HVAC systems, energy audits, and the shift from fossil
	fuels to renewables for efficient building practices.
	CO3: Investigate green materials, indoor environmental quality, and building commissioning
	to enhance sustainable construction and occupant well-being.
	CO4: Analyze economics of green construction, life-cycle analysis, and feasibility assessment
	for informed decision-making in green building projects.

Course Code	CED452			
Course Title	CONSTRUCTION EQUIPMENT AND AUTOMATION			
Course	CO1: Compare conventional and mechanized construction methods, highlighting			
Outcomes	mechanization's advantages.			
CO2: Identify diverse construction equipment for tasks like earthmoving, concre				
	material transport, emphasizing their roles.			
	CO3: Examine heavy machinery like cranes and hoists, discussing their functions,			
	productivity, and material transportation equipment.			
	CO4: Explore advanced surveying techniques: aerial surveying, GIS, GPS, drones, and robots,			
	emphasizing their applications in construction.			

In	hou		
L	Т	Р	Credit
3	0	0	3

Course Code	CED453
Course Title	CONSTRUCTION COST ANALYSIS
Course	CO1: Apply scientific principles to construction costs and analyze factors affecting them in
Outcomes	engineering contexts.
	CO2: Analyze direct and overhead costs, markups, and profits, employing statistical measures
	for informed decision-making.

CO3: Calculate project funds, manage cash flow, and evaluate contract-based cash
inflow/outflow, aligning with project expectations.
CO4: Master cost recording, cash custody, and payment types for effective construction cost
accounts and financial controls.

In	hou		
L	T	Р	Credit
3	0	0	3

Course Code	CED454
Course Title	ECOLOGICAL ENGINEERING
Course Outcomes	CO1: Define ecology, analyze ecosystem types, explore biotic-abiotic interactions, examine population dynamics, and comprehend community structure. CO2: Analyze eco technology classification, assess environmental system interactions, and evaluate human impacts on environmental systems. CO3: Investigate ecological engineering processes, study energy concepts, and apply ecological engineering in agro ecosystems and disaster scenarios.
	CO4: Comprehend the soil infiltration, wetlands, source separation, aqua cultural, and detritus-based systems, and their applications in ecological engineering for marine environments.

Course Code	CED455
Course Title	AIR AND NOISE POLLUTION CONTROL
Course	CO1: Analyze air pollution's global significance, effects, and atmospheric composition for
Outcomes	informed environmental engineering decisions.
	CO2: Apply meteorological concepts, dispersion modeling, and plume behavior to assess air
	quality and make effective engineering choices.
	CO3: Evaluate air pollution through stack monitoring, indoor models, and control measures
	for stationary and mobile sources.
	CO4: Examine noise pollution's impact, prediction, control, and health effects, considering
	criteria, factors, and monitoring techniques.

In	hou		
L	Т	Р	Credit
3	0	0	3

Course Code	CED456
Course Title	SOLID WASTE MANAGEMENT
Course	CO1: Identify solid waste types, sources, and related laws, integrated waste management
Outcomes	concepts.
	CO2: Analyze waste characteristics, reduction strategies, recycling, and waste handling
	systems. Evaluate hazardous waste management practices.
	CO3: Examine waste processing technologies: composting, thermal conversion, energy
	recovery, and hazardous waste treatment. Assess biomedical waste treatment methods.
	CO4: Evaluate landfill disposal processes: site selection, design, operation, leachate
	management, and landfill closure, environmental monitoring and remediation techniques.

In	hoı	ırs	
L	Т	P	Credit
3	0	0	3

Course Code	CED457
Course Title	DESIGN OF CONCRETE STRUCTURES-II
Course Outcomes	 CO1: Analyze moment redistribution in RC beams, apply limit analysis, and interpret moment-curvature relationships in structural elements. Design of staircases. CO2: Apply RCC footing theories to design isolated, combined, and raft footings, considering various geometric configurations and loadings. CO3: Design curved plan beams, including semi-circular and circular beams, and analyze building frames for critical loads using SP16 guidelines. CO4: Design different types of retaining walls (cantilever and counterfort), water tanks, and staging structures, applying relevant design criteria and principles.

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED458
Course Title	MATRIX METHODS FOR STRUCTURAL ANALYSIS
Course	CO1: Develop comprehending of matrices, determinants, and their applications in solving
Outcomes	linear equations and systems.
	CO2: Analyze pin-jointed frames using the flexibility method, considering temperature effects
	and displacements in indeterminate structures.
	CO3: Master the stiffness method for structural analysis, handling relative displacements, and
	analyzing indeterminate pin-jointed frames.
	CO4: Apply computer tools like MS Excel to perform matrix-based structural analysis on
	various types of beams, trusses, and frames.

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED459
Course Title	ENVIRONMENTAL GEOTECHNOLOGY
Course	CO1: Comprehend soil formation, composition, and structure's influence on engineering
Outcomes	behavior for effective geotechnical applications.
	CO2: Grasp mechanisms of subsurface contamination, its detection, monitoring, and the
	impact of contaminants on soil properties.
	CO3: Gain proficiency in comprehensive site investigation techniques, including geophysical
	and hydro-geological methods for environmental assessment.
	CO4: Develop knowledge of waste containment concepts, remediation strategies, and real-
	world case studies related to geo-environmental challenges.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED460
Course Title	PORT AND HARBOUR ENGINEERING
Course Outcomes	 CO1: Comprehend the principles and significance of water transportation and its various components, including inland waterways, harbours, and ports. CO2: Analyze the impact of natural phenomena such as wind, tides, waves, and sediment transport on harbour design, structure, and coastal protection. CO3: Comprehend the design, construction, and functionality of different harbour infractructures including broadwaters docks piers and pavigational aids.
	CO4: Develop the skills to plan and evaluate port facilities for efficient cargo and passenger handling, considering regional connectivity, economic viability, and environmental impacts.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED461
Course Title	DESIGN OF HYDRAULIC STRUCTURES
Course	CO1: Comprehend head work components, seepage theories, and silt control mechanisms in
Outcomes	hydraulic engineering projects.
	CO2: Gain expertise in designing weirs, barrages, and energy dissipation structures for
	effective water flow management.
	CO3: Develop skills in regulating canal flows through cross-drainage works, falls, and escape
	mechanisms for optimized water distribution.
	CO4: Master the design principles of canal outlets, aqueducts, and siphons, focusing on
	efficiency, modularity, and hydraulic behavior.

In hours			
L	Τ	Р	Credit
3	0	0	3

Course Code	CED462
Course Title	REPAIR AND REHABLITATION OF STRUCTURES
Course	CO1: Comprehend maintenance, repair, and rehabilitation strategies for structures, including
Outcomes	inspection, assessment, and causes of deterioration.

CO2: Comprehend concrete strength, durability, cracks, and effects of environmental factors,
corrosion, and cover thickness.
CO3: Familiarize with special concretes, repair techniques, and protection methods using NDT,
epoxy injection, corrosion inhibitors, and innovative materials.
CO4: Gain insight into reinforcement coatings, cathodic protection, structural rehabilitation,
strengthening methods, and demolition techniques through case studies.

In	hou	rs	
L	Т	Р	Credit
3	0	0	3

Course Code	CED463
Course Title	MATERIAL CHARACTERIZATION
Course	(CO1): Introduce fundamental techniques (calorimetry, X-ray diffraction) for comprehending
Outcomes	construction materials' properties and structures.
	(CO2): Develop proficiency in analyzing construction materials through thermal, surface area
	measurement, optical, and electron microscopy techniques.
	(CO3): Enhance skills in image analysis and spectroscopic techniques for advanced
	characterization of construction materials.
	(CO4): Gain expertise in utilizing methods like mercury intrusion porosimetry and impedance
	analysis for assessing porosity and material behavior.

In hours			
L	Т	Р	Credit
3	0	0	3

Course Code	CED464
Course Title	STRUCTURAL ENGINEERING-II
Course	CO1: Comprehend classical methods (Slope Deflection, Moment Distribution) for analyzing
Outcomes	statically indeterminate structures and their applications.
	CO2: Gain proficiency in matrix methods (stiffness and flexibility) to analyze skeletal
	structures including beams, trusses, and plane frames.
	CO3: Apply energy principles (Castigliano's theorems) to analyze framed structures, both
	statically determinate and indeterminate, under various loads.
	CO4: Develop skills in creating influence line diagrams (ILD) for determinate and
	indeterminate structures to evaluate support reactions and internal forces.

*	In	hou	rs	
	L	T	Р	Credit
AND AN ANTAR	3	0	0	3

Course Code	CED465
Course Title	FLUID MECHANICS
Course	CO1: Comprehend fundamental principles of fluid mechanics, including laminar and porous
Outcomes	media flow, boundary layer theory, and transition to turbulent flow.
	CO2: Comprehend the characteristics of turbulent flow, velocity distribution, drag and lift
	forces on immersed bodies, and resistance diagrams.
	CO3: Gain knowledge of open channel flow principles, including resistance equations, flow
	classifications, velocity distribution, Energy and Momentum principles and critical flow, and
	efficient flow sections.
	CO4: Develop expertise in gradually varied flow analysis, water surface profiles, hydraulic
	jumps, and surge phenomena in open channels.

OPEN ELECTIVES

In	hou		
L	Τ	Р	Credit
3	0	0	3

Course Code	CIV801
Course Title	CONSTRUCTION MATERIALS AND TECHNIQUES
Course	CO1: Analyze building materials' properties, selection, and deterioration mechanisms for
Outcomes	informed construction decision-making.
	CO2: Comprehend cement and concrete production, characteristics, workability, and factors
	influencing concrete strength.
	CO3: Learn masonry techniques, damp proofing methods, and their importance in building
	durability and structural integrity.
	CO4: Gain insights into plastering, pointing, foundation types, and their roles in creating
	functional and stable structures.

In	hou		
L	Т	Р	Credit
3	0	0	3

Course Code	CIV802
Course Title	RAILWAY AND TUNNEL ENGINEERING
Course	CO1: Comprehend the historical evolution of railways, permanent way construction, and basic
Outcomes	points and crossing layouts.
	CO2: Comprehend station and yard site selection, track laying, signaling principles, and
	interlocking systems for safe railway operations.
	CO3: Gain insights into tunnel construction necessities, design for highways and railways, and
	ventilation/drainage methods for tunnels.
	CO4: Grasp the significance of tunnel ventilation, drainage, and lighting systems for operational
	safety and efficiency in underground transportation infrastructure.

*	In hours			
	L	Τ	Р	Credit
DAV UNIVERSITY	3	0	0	3

Course Code	CIV803			
Course Title	METRO SYSTEMS AND ENGINEERING			
Course	CO1: Comprehend the fundamental concepts of metro systems, their necessity, routing			
Outcomes	considerations, planning, and financial aspects.			
	CO2: Gain insights into the construction of metro stations, elevated structures, tunnels, depots,			
	ventilation, safety systems, and building infrastructure.			
	CO3: Learn about the preliminary surveys, construction management, quality, safety,			
	environmental and social aspects, track systems, and facilities management in metro projects.			
	CO4: Acquire knowledge about signaling, fare collection, control centers, SCADA systems, and			
	platform screen doors for efficient metro operation and management.			

In	hou		
L	Т	Р	Credit
3	0	0	3

Course Code	CIV804
Course Title	DISASTER PREPAPREDNESS AND PLANNING
Course	After completing this course the student must demonstrate the knowledge and ability to: CO1:
Outcomes	Identify various types of disasters, their causes, effects & mitigation measures.
	CO2: Demonstrate the understanding of various phases of disaster management cycle and
	create vulnerability and risk maps. Understand the use of emergency management system to
	tackle the problems
	CO3: Discuss the role of media, various agencies and organizations for effective disaster
	management. Design early warning system and understand the utilization of advanced
	technologies in disaster management
	CO4: Compare different models for disaster management and plan & design of infrastructure
	for effective disaster management

	**
	VEDAS
1	
	DAVUNIVERSITY

In	hou		
L	Τ	Р	Credit
3	0	0	3

Course Code	CIV805
Course Title	ROAD SAFETY
Course	After completing this course:
Outcomes	CO1: Student will be able to learn causes of road accidents with various influence on traffic
	safety.
	CO2: Student will gain insight on various road safety measure to decrease road crash
	frequency.
	CO3: Students will become familiarize with road safety audit and its procedure, ITS importance
	in implementation of road safety.
	CO4: Student will be able to acknowledge various parameters to ensure traffic safety in road
	operation.