FACULTY OF SCIENCE

Course Scheme & Syllabus For Bachelor of Science in Computer Science (Hons.)

(As per NEP-2020) Batch-2024 &onwards

(As per Choice Based Credit System) 1st TO 8th SEMESTER

Introductory Note of the Programme

The BSc program is designed to equip you with the knowledge and skills necessary to thrive in the rapidly evolving field of information technology, physics and mathematics. Over the course of this program, you will explore various aspects of computer science, including programming languages, database management, software development, networking, web development, and much more. Our curriculum is carefully crafted to strike a balance between theoretical knowledge and practical application, ensuring that you not only grasp the fundamental concepts but also gain hands-on experience in solving real-world problems.

Program Educational Objectives (PEOs)

PEO-1. Work productively as successful Computer professionals in diverse career paths including supportive and leadership roles on multidisciplinary teams or be active in higher studies.

PEO-2. Communicate effectively, recognize and incorporate societal needs and constraints in their professional endeavours, and practice their profession with high regard to ethical responsibilities.

PEO-3. Engage in life-long learning and to remain current in their profession to foster personal and organizational growth.

Programme Outcomes (POs)

PO-1: Apply mathematics and computing fundamental and domain concepts to find out the solution of defined problems and requirements. (Computational Knowledge)

PO-2: Use fundamental principle of Mathematics and Computing to identify, formulate research literature for solving complex problems, reaching appropriate solutions. (Problem Analysis)

PO-3: Understand to design, analyze and develop solutions and evaluate system components or processes to meet specific need for local, regional and global public health, societal, cultural, and environmental systems. (Design/Development of Solutions)

PO-4: Use expertise research-based knowledge and methods including skills for analysis and development of information to reach valid conclusions. (Conduct Investigations of Complex Computing Problems) **PO-5:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. (Modern tool usage)

PO-6: Exhibiting ethics for regulations, responsibilities and norms in professional computing practices. (Professional Ethics)

PO-7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and sustainability).

PO-8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice (Ethics).

PO-9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work).

PO-10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). **PO-11:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (Project management and finance).

PO-12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long learning).

Program Specific Objectives (PSOs)

PSO-1: Analyze their abilities in systematic planning, developing, testing and executing complex computing and computer science in field of Physics, Mathematics, social media and Analytics, Web Application Development and Data Interpretations.

PSO-2: Apprise in-depth expertise and sustainable learning that contributes to multidisciplinary creativity, permutation, modernization and study to address global interest.

Mapping of PSOs with PEOs

PEOs→	PEO 1	PEO 2	PEO 3
PSO↓			
PSO1	Yes		Yes
PSO2		Yes	Yes

Mapping of POs with PEOs

PEOs->	PEO 1	PEO 2	PEO 3
POs↓			
PO1	Yes		Yes
PO2			Yes
PO3	Yes		Yes
PO4		Yes	
PO5	Yes	Yes	
PO6			Yes
PO7	Yes		Yes
PO8			
PO9		Yes	
PO10	Yes		Yes
PO11		Yes	
PO12	Yes	Yes	

Scheme of Courses Bachelor of Science (Computer Science)

	Credit Details		
S.No.	Course Category	Course Category Abbreviation	3-Yr B.C.A/ (Credits)
1.1	Discipline Specific Courses-Core	DSC	65
1.2	Discipline Specific-Skill Enhancement Courses- Core	DS-SEC	00
1.3	Discipline Specific-Value Added Courses-Core	DS-VAC	
2.1	Total of Discipline Specific Core Courses	MC	24
2.1	OR	MC	24
2.2	Interdisciplinary Courses	IDC	00
3	Multidisciplinary Courses	MDC	11
4	Ability Enhancement Course- Common	AEC-C	08
5	Value Added Courses-Common	VAC-C	06
6.1	Skill Enhancement Courses- Common	SEC-C	08
6.2	Skill Enhancement Courses-Summer Internship	SEC-SI	04
	Total of Skill Enhancement Courses	•	
	Total Credits		126

	Cr	edit Details		
S.No.	Course Category	Course Category Abbreviation	4-Yr B.C.A. (Hons.)/ (Credits)	4-Yr B.C.A. (Hons/ (Hons. with Res.) (Credits)
1.1	Discipline Specific Courses-Core	DSC	88	76
1.2	Discipline Specific-Skill Enhancement Courses-Core	DS-SEC	04	04
1.3	Discipline Specific-Value Added Courses-Core	DS-VAC		
	Total of Discipline Specific Co	re Courses		
2.1	Minor Courses	MC	32	32
		OR	·	
2.2	Interdisciplinary Courses	IDC	00	00
3	Multidisciplinary Courses	MDC	11	11
4	Ability Enhancement Course- Common	AEC-C	08	08
5	Value Added Courses-Common	VAC-C	06	06
6.1	Skill Enhancement Courses- Common	SEC-C	08	08
6.2	Skill Enhancement CoursesSummer Internship	SEC-SI	04	04
6.3	Skill Enhancement Courses- Research Project/Dissertation	SEC-RP		12
	Total of Skill Enhancement Co	urses		
	Total Credits		161	160

Scheme of Courses Bachelor of Science (Hons.) (Computer Science)

S. No	Paper Code	Course Title	Course Category	L	Т	Р	Cr
1	CSP103	Algorithm Design and Programming Using C	DSC	3	0	2	4
2	MAT171	Algebra	DSC	3	0	0	3
3	PHS101	Mechanics	DSC	3	0	2	4
4	XXXX	Multi-Disciplinary Course	MDC	3	0	0	3
5	XXXX	Ability-Enhancement Course	AEC-C	2	0	0	2
6	XXXX	Skill-Enhancement Course (common)	SEC-C	2	0	0	2
7	XXXX	Value-added Course	VAC-C	2	0	0	2
		Τα	otal		-		20

Semester 1

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 2

S. No	Paper Code	Course Title	Course Category	L	Т	Р	Cr
1	CSP104	Object Oriented Programming using C++	DSC	3	0	2	4
2	MAT172	Ordinary Differential Equations	DSC	3	0	0	3
3	PHS201	Vibrations and Waves	DSC	3	0	2	4
4	XXXX	Multi -Disciplinary Course	MDC	2	0	0	2
5	XXXX	Ability-Enhancement Course	AEC-C	2	0	0	2
6	XXXX	Skill-Enhancement Course (common)	SEC-C	3	0	0	3
7	XXXX	Value-added Course	VAC-C	1	0	2	2
8	XXXX	Value-added Course	VAC-C	1	1	0	2
		То	tal		1	1	22

L-Lectures T-Tutorial P-Practical Cr.- Credits FIRST EXIT:

The students will be awarded "Undergraduate Certificate in Computer Science" after exit at this point, provided they secure 4 Credits in skill/work-based vocational courses or internship/apprenticeship for 4-6 weeks (with minimum 120 hours) during summer term.

S.No	Paper Code	Course Title	Course Category	L	Т	Р	Cr
1	CSP 203	Database Concepts	DSC	3	0	2	4
2	MAT 271	Real Analysis	DSC	3	0	0	3
3	PHS202	Digital Systems and Application	МС	3	0	2	4
4	XXXX	Multi -Disciplinary Course	MDC	3	0	0	3
5	XXXXX	Ability-Enhancement Course	AEC-C	2	0	0	2
6	XXXX	Skill-Enhancement Course (common)	SEC-C	3	0	0	3
		Τα	otal				19

Semester 3

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 4

S. No	Paper	Course Title	Course Category	L	Т	P	Cr
	Code						
1	CSP 206	Operating Systems	DSC	3	0	0	3
2	CSP 204	Data Structures	DSC	3	0	2	4
3	CSP 208	Computer Networks	DSC	3	0	2	4
4	MAT272	Analytical Geometry	МС	3	0	0	3
5	PHS211	Optics	MDC	3	0	0	3
6	PHS204	Thermal and Statistical Physics	МС	3	0	2	4
7	XXXX	Ability-Enhancement Course	AEC-C	2	0	0	2
		·	Total				21

L-Lectures T-Tutorial P-Practical Cr.- Credits

SECOND EXIT:

The student will be awarded "Undergraduate Diploma in Computer Science" after exit at this point provided that he/she secure 4 Credits in skill/work based vocational courses or internship/apprenticeship for 4 - 6 weeks (with minimum 120 hours) offered during first year summer term or second year summer term.

NCC 3 credits are only earned by those students who are opted NCC

S. No	Paper Code	Course Title	Course Category	L	Т	Р	Cr
1	CSP 302	Programming in Python	DSC	3	0	2	4
2	CSP 304	Cyber Security	DSC	3	0	2	4
3	MTH	Number Theory	DSC	3	0	0	3
4	PHY	Quantum Physics	МС	3	0	2	4
5	MTH	Mechanics I	MC	3	0	0	3
6		Internships	SEC	0	0	8	4
	Total						22

Semester 5

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 6

S. No	Paper	Course Title	Course Category	L	Т	Р	Cr
	Code						
1	CSP 311	Artificial Intelligence	DSC	3	0	0	3
2	CSP 314	Discrete Mathematics	DSC	3	0	0	3
3	CSP 312	Software Engineering	DSC	3	0	0	3
4	MTH	Mechanics II	МС	3	0	0	3
5	PHY	Particle Physics	DSC	3	0	0	3
6	PHY	Nuclear Physics	МС	2	0	2	3
	Total						18

L-Lectures T-Tutorial P-Practical Cr.- Credits

Note: If the Student get CGPA >= 7.5 then he/she will have to submit the Research Project with 12 Credit.

THIRD EXIT:

The student will be awarded "Bachelor of Science in Computer Science" degree after exit at this point. NCC 3 credits are only earned by those students who are opted NCC

S.No	Paper Code	Course Title	Course Category	L	Τ	Р	Cr
1	CSP405	Theory of Computer Science	DSC	4	0	0	4
2	CSP404	Advanced in Operating System	DSC	3	0	2	4
3			DS-SEC	4	0	0	4
4	CSP401	Research Methodology	МС	4	0	0	4
5	CSP402	Internet of Things	DSC	3	0	2	4
	Total						

Semester 7

DS-SEC (Discipline Specific-Skill Enhancement Course-Core)-(Choose One)

S.No	Paper Code	Course Title	L	Т	Р	Cr
1	CSP406	Compiler Design	3	0	0	3
2	CSP407	Emerging Trends and Technology	3	0	0	3

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 8

S. No	Paper	Course Title	Course Category	L	Т	Р	Cr
	Code						
1	CSP409	Mobile Computing	DSC	4	0	0	4
2	CSP411	Digital Image Processing	DSC	3	0	2	4
3	CSP410*	Major Project		0	0	12	6
4	CSP412*	Cryptography and Network Security	МС	2	0	2	3
5	CSP316*	R Programming	DSC	3	0	2	4
			Total	•			20

L-Lectures T-Tutorial P-Practical Cr.- Credits

□ *Those students are adopting the research project they are exempted these courses. (12 credit)

S.No	Paper Code	Course Title	Course Category	L	Т	Р	Cr
1	CSP415	Research Project		0	0	24	12
			Total				12

Note: If the Student get CGPA less than 7.5, then He/ She will have to submit the Research Project with 12 Credit.

FOURTH EXIT:

The student will be awarded "Bachelor of Science in Computer Science (Hons.)" degree after exit at this point.

List of Multi-disciplinary open elective courses at DAV University

Sr. No.	Course Name	Faculty/Department
1	Basics of Physics	Physics
2	Basics of Chemistry	Chemistry
3	Basics of Biology	Zoology & Botany
4	Introductory Biotechnology	Biotechnology
5	Introductory Microbiology	Microbiology
6	Functioning of the Human Body	Zoology
7	Introductory Botany	Botany
8	Business Management for Beginners	CBME
9	Fundamental of Mutual Funds	CBME
10	Economics for Beginners	CBME
11	Professional Communication	English
12	Fine Arts	Arts, Fine Arts & Performing Arts
13	Jyotish: 'Eye of the Veda'	Vedic Studies
14	Mathematical Statistics	Mathematics
15	Introductory Journalism	ЈМС
16	Professional Photography	ЈМС
17	Library Information Sciences	Library Sciences

Common courses with credits

Ability- Enhancement Courses	Cr.	Skill- Enhancement Courses	Cr.	Value-Added Courses	Cr.
Personality Enhancement	1L+1P	Essentials of Entrepreneurship- Thinking and Action	2L+1P	Environmental Studies (Mandatory)	2L+1P
Personality Development	2P	Design Thinking	2P	Human Values and Ethics (Mandatory)	2L+1T
Behavioural & Life Skills	1L+1P	Design Thinking & Innovation	2L	Gender Sensitization	2L
Global Citizenship in Higher Education	2L	Data Analytics	2L+1P	Professional Ethics	2L
Communication Skills (Mandatory)	1L+1P	Cyber Security	3 (2L+1P)	Sustainable Development	2L
OR		Digital Fluency	1L+1P	Green Technologies	2L
Cambridge English-I (Mandatory#) & Cambridge English-II (Mandatory#)	1L+1P 1L+1P				
# To be offered in two semesters					
Health & Yoga	1L+1P	Fundamentals of Computer programming & IT(FCPIT)	2L	General Studies	2L
Technical Report Writing	2L	Python Programming	3 (2L+1P)	NSS	2 (1L+1P)
Leadership Management	2L	Disaster Preparedness and Planning	2L		
Therapeutic Yoga	1L+1P	Intellectual Property Rights	2L		
Creative & Critical Thinking	1L+1P	Apiculture	2P		

Community	1L+1P	NCC*	3 (2L+1P)	
Engagement & Social				
Responsibility				
(Mandatory)				
		LATEX	3	
			(1L+2P)	
		Programming with FORTRAN	3(2L+1P)	

Notes:

a. Due to the constraint on total number of credits to be restricted under 160 for four year UG programmes, the mandatory courses which may or may not fall under ability-enhancement, skillenhancement (common) or value- added courses can be offered as non-credit course and the student will have to qualify (as Satisfactory/Unsatisfactory) these courses to secure minimum passing marks through the process of assessment as mandated by DAV University.

- b. Minimum number of students feasible to run a common course (Ability- enhancement, Skillenhancement (common) and Value-added) will be 20 students.
- c. *Pre-requisite to opt NCC is that the student must be in possession of Certificate B or has appeared in B-certificate exam of NCC. NCC course shall run in two semesters of 3 credits (2L+1P) in each semester. Student who wishes to opt for NCC is required to study in two semesters of total 6 credits.

Semester 1

			Semester	1					
	In hours								
VIDAL						L	T	Р	Credit
DAV UNIVERSITY	J					3	0	0	3
Course Code	CSP103								
Course Title	Algorith	m Design and Program	mming Us	sing C					
Course		ompletion of the course							
Outcomes	application repetition CO2: To CO3: App	define the concept of p on are using algorithms a structure. understand the Concep ply the concepts of Fur monstrate the ability to	, pseudo-c ot of fundat action, arra	odes and flo mentals of p ays, Structur	wcharts & se rogramming e & Union.	equenti & Cor	ial, s ntrol	selec stru	tion and
Examination Mode	Theory/ I	Practical/ Theory + Practical/	ctical						
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EP	R	ABI	L/PBL
Weightage	10%	10%	25%	-	50%	_		5%	
Syllabus								CO	
								Maj	oping
Unit 1		entals of algorithm ons & Control Struct	-	programmii	ng, Operat	ions	and	CO	l
	Brainstor Problem, (Definitio	Problem-solving, Proming, Divide & Cor Analyze Problem, Expons, Symbols), pseudo-	nquer), Sto plore Solu codes.	eps in prob	olem solving	g (Def	ine		
	Character	· · ·	W /	Data Tana a	Constants	V	1		
	Expressio	r Set, Identifiers and Koons, Statements, Symbo	•	• •			les,		
	Single Cl About Sc	r Set, Identifiers and Ko	Character (Output D	Output, Ente Data, More A	erators & its r ering Input I	types. Data M	ore		
Unit 2	Single Cl About Sc Gets and	r Set, Identifiers and Ko ons, Statements, Symbo haracter Input, Single (can Functions, Writing	Character (Output D y functions	Output, Ente Output, Ente Data, More A s.	erators & its p ering Input I About Print I	types. Data M	ore ons,	CO2	2
	Single Cl About Sc Gets and Decision Introduct	r Set, Identifiers and Ko ons, Statements, Symbo haracter Input, Single (can Functions, Writing Puts Functions, Library Making and Looping ion, Decision Making nd Do-While, For Loop	Character (Output D y functions (Statemen with If-S	output, Ente Output, Ente Data, More A s. Its & Array Statement, I	erators & its pering Input I About Print I f Else and I	types. Data M Functic Nested	ore ons, If,	CO2	2
Unit 2	Single Cl About Sc Gets and Decision Introduct While Ar Switch St Introduct	r Set, Identifiers and Ko ons, Statements, Symbo haracter Input, Single (can Functions, Writing Puts Functions, Librar Making and Looping ion, Decision Making nd Do-While, For Loop tatement. ion to Arrays, Array Memory Representati	Character (Output D y functions Statemen with If–S o, Jump St	Output, Ente Output, Ente Data, More A s. Ints & Array Statement, It atements: B	erators & its pering Input I About Print I f Else and I reak, Contin	types. Data M Functio Nested ue, Go mensio	ore ons, If, to,	CO	2
Unit 2	Single Cl About Sc Gets and Decision Introduct While Ar Switch St Introduct Array, N Functions	r Set, Identifiers and Ko ons, Statements, Symbo haracter Input, Single (can Functions, Writing Puts Functions, Library Making and Looping ion, Decision Making nd Do-While, For Loop tatement. ion to Arrays, Array Memory Representati s. is, Structure and Unic	Character (Output D y functions Statemen with If–S o, Jump St Declaratio on, Matr	Output, Ente Output, Ente Data, More A s. Its & Array Statement, If atements: B on, Single a ices, String	erators & its pering Input I About Print I f Else and I reak, Contin and Multidings, String	types. Data M Function Nested ue, Go mension Handl	ore ons, If, to, onal ing	CO2	
Unit 2	Single Cl About Sc Gets and Decision Introduct While Ar Switch St Introduct Array, M Functions Function Introduct Standard	r Set, Identifiers and Ko ons, Statements, Symbo haracter Input, Single (can Functions, Writing Puts Functions, Librar Making and Looping ion, Decision Making nd Do-While, For Loop tatement. ion to Arrays, Array Memory Representati s.	Character (Output D y functions Statemen with If–S o, Jump St Declaratio on, Matr D unction D s and Para	Output, Enter Output, Enter Data, More A s. Ints & Array Statement, If atements: B on, Single a ices, String Declaration, imeter Passi	erators & its pering Input I About Print I f Else and I reak, Contin and Multidin gs, String Function C ng, Pass – I	Data M Data M Functio Nested ue, Go mensic Handl dategor By Val	ore ons, If, to, nal ing ies,		
Unit 2	Single Cl About Sc Gets and Decision Introduct While Ar Switch St Introduct Array, 1 Functions Functions Introduct Standard Reference Declaratio	r Set, Identifiers and Ko ons, Statements, Symbol haracter Input, Single (can Functions, Writing Puts Functions, Librar Making and Looping ion, Decision Making nd Do-While, For Loop tatement. ion to Arrays, Array Memory Representati s. IS, Structure and Unic ion To Functions, For Functions, Parameters	Character (Output D y functions Statemen with If–S o, Jump St Declaratio on, Matr Dn unction D s and Para ad Local V Accessing	Output, Enter Output, Enter Data, More A s. Ints & Array Statement, If atements: B on, Single a ices, String Declaration, imeter Passi ariables, Sto Structure	erators & its pering Input I About Print I f Else and I reak, Contin and Multidin gs, String Function C ng, Pass – I prage Classes Members,	Data M Data M Functio Nested ue, Go mensic Handl dategor By Val	If, to, onal ing ies, lue/	CO3	

	Introduction To Pointers, Address Operator and Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.
	Introduction, creating a Data File, Opening and Closing a Data File, Processing a Data File.
	Introduction and Use, Macros, Conditional Preprocessors, Header Files
Text Book/s	1. Balagurusami E, Programming in ANSIC, New Delhi: Tata McGraw Hill, Fourth Edition (2010).
Reference Book/s	1. Sprankle, M&J. Hubbard, <i>Problem solving and programming concepts</i> , 9 th Edition. NJ: Prentice Hall, 2012.
	2. Gaddis, T., <i>Starting out with programming logic and design</i> , 3 rd Edition. Boston: Addison Wesley 2012.
	3. Venit, S. &E. Drake, <i>Prelude to programming: Concepts and design</i> , 5 th Edition. Boston: Addison Wesley, 2011.
	4. R.G.Dromy. <i>How to Solve it by Computer</i> , 3 rd Edition, New Delhi: Pearson Education, 2007.
	5. Kanetkar Yashwant P, Let us C, New Delhi: BPB Publications,
	Seventh Edition (2007).
	6. Kernighan & Richie, <i>The C Programming Language</i> , New Delhi: PHI Publication, Second Edition (2009).

In	hou		
L	Т	Р	Credit
3	0	2	4

	PHS101								
Course Code									
Course Title	Mechanics								
Course Outcomes	Transforma CO2: To en under inver CO3: Stude learn conce CO4: Studen They will be	 CO1: To enable the students to understand different types of reference frames, Transformations, concept of collision and non-inertial systems. CO2: To enable the students to understand rotational dynamics and motion of a under inverse square central forces, CO3: Students will gain information about Special theory relativity. They will b learn concept of relativistic mass and some of its consequences. CO4: Students will be able to verify some of the concepts learnt in the theory concept will be trained in performing experiments of Mechanics. 							
Examination	Theory+ Pra	ctical							
Mode Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/PB L	Lab Performance	141917	14101	LOL	1201	
Weightage	10	-	5	-	25	-	35	25	
Syllabus Unit 1								CO Mappin g	
	 Fundamentals of Dynamics Fundamentals of Dynamics: Inertial frames; Galilean transformations; Galilean invariance. Centre of mass. Principle of conservation of momentum. Conservative and non- conservative forces. Potential Energy. Force as gradient of potential energy. Collisions: Elastic and inelastic collisions between particles. Centre of mass and laboratory frames. Various relations between lab and centre of mass frames. Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly 								
Unit 2	rotating frame, Centrifugal force, Coriolis force and its applications. Rotational Dynamics and Central force motion								
Rotational Dynamics and Central force motion Rotational Dynamics: Angular momentum of a particle and system particles. Torque. Principle of conservation of angular momentum. Rota about a fixed axis. Moment of Inertia. Calculation of moment of inertia rectangular, cylindrical and spherical bodies. Central force motion:							Rotation ertia for	2	
	Central forces, Law of conservation of angular momentum for central forces, Two-body problem and its reduction to equivalent one-body problem and its solution, Concept of effective potential energy and stability of orbits for central potentials of the form kr^n for $n = 2$ and -1 using energy diagram, discussion on trajectories for $n=-2$. Solution of Kepler's problem, Kepler's laws for planetary motion, orbit for artificial satellites								
Unit 3	Special The	ory of Relativi	ity						

Unit 4	 Michelson-Morley Experiment and its outcome, Postulates of Special Theory of Relativity, Lorentz Transformations, Simultaneity and order of events, Lorentz contraction, Time dilation, Relativistic transformation of velocity, frequency and wave number, Relativistic addition of velocities, Variation of mass with velocity, Massless Particles, Mass-energy Equivalence, Transformation of Energy and Momentum. List of Experiments 	3
	 To determine the height of a building using a Sextant. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity To determine the Moment of Inertia of a Flywheel. To determine the Modulus of Rigidity of a Wire by Maxwell's needle To determine the elastic Constants of a wire by Searle's method. To determine the value of g using Bar Pendulum. To determine the value of g using Kater's Pendulum. 	
Text Books	 D. Kleppner, R.J. Kolenkow, An introduction to mechanics, New Delhi: McGraw-Hill, 1973. C.Kittel, W.Knight, et.al. Mechanics, Berkeley Physics, vol.1, New Delhi: Tata McGraw-Hill, 2007. Resnick, Halliday and Walker, Physics, 8/e. Wiley, 2008. D.S. Mathur, Mechanics, New Delhi: S. Chand and Company Limited, 2000. F.W Sears, M.W Zemansky, H.D Young, University Physics. 13/e, Addison Wesley, 1986. C.L. Arora, B.Sc. Practical Physics 	,
Reference Books	 G.R. Fowles and G.L. Cassiday, Analytical Mechanics, New Delhi: Cengage Learning, 2005. R. P. Feynman, R. B. Leighton, M. Sands, Feynman Lectures, Vol. I, Pearson Education, 2008. R. Resnick, Introduction to Special Relativity, John Wiley and Sons, 2005. R. L. Reese University Physics, Thomson Brooks/Cole, 2003. S. Panigrahi and B. Mallick, Engineering Practical Physics, Cengage Learning India Pvt. Ltd, 2015. 	4

In	hou		
L	Τ	Р	Credit
3	-	-	3

Course	MA	[171									
Code											
Course	Alge	Algebra									
Title											
Course		-		he course the student							
				em of homogeneous a			ear equatio	ns.			
es				natrix and apply the Cay			of Algobr				
				roots of polynomials							
				sturm's process	or third and r	ourin degree					
Examina			8								
tion		•									
Mode					I			1			
Assess			1		MSE	MSP	ESE	ESP			
ment Tools	-	Assign	ABL/P	Lab							
1 0015	Z	ment	B	Performance							
Weight	10	10	5		25		50				
age	10	10	C				20				
Syllabu								CO Mappi			
S								ng			
Unit 1	The	ory of sy	stem of li	near equations							
	Revi	ew of sy	stem of li	near equations				CO1			
	gene	ral theor	y of syste	m of linear equations				CO1			
	Row	and colu	ımn rank	of a matrix				CO1			
	Syste	em of ho	mogeneou	is and non-homogene	eous linear equ	uations		CO1			
Unit 2	Ran	k of Mat	trix and (Cayley Hamilton Th	eorem						
	Matr	ices and	Rank of r	natrix				CO2			
	Inve	rse of ma	trix, Elen	nentary Linear Trans	formations			CO2			
	Dete	rminants	and their	properties, Cramer H	Rule			CO2			
	Cayl	ey Hami	lton Theo	rem				CO2			
Unit 3	Fund	lamenta	l Theore	m of Algebra							
	A de	eper lool	k at comp	lex Numbers, taking	roots of comp	lex numbers	5	CO3			
	Quic	k review	of operat	ions on polynomials				CO3			
	Divi	sors and	greatest c	ommon divisor				CO3			
	Roots of polynomials, Fundamental Theorem of Algebra, corollaries of Fundamental Theorem.						CO3				
Unit 4				ic Polynomials							
		Evaluating roots of polynomials of third and fourth degree						CO4			

	ounds of roots, Sturm's Theorem CO4						
	Descarte's rule of signs CO4						
	Approximation of Roots	CO4					
Text Books	 A. Kurosh, Higher Algebra, MIR Moscow,1982 Lipschutz, Seymour and Lipson, Marc Schaum's Outline of Linear Algebra, 3rd Edition, McGraw Hill Education, 2017. 						
Refere nce Books	 Shanti Narayan and P. K. Mittal, A textbook of matrices, S.Chand and Company Limited, 2019. Friedberg, S.H., A.J. Insel and L.E. Spence. <i>Linear Algebra</i>. Prentice Hall, 2003. 						

Semester - 2

In	hou		
L	Τ	Р	Credit
3	0	2	4

Course Code	CSP104						
Course Title	Object O	riented Programming	g using C+	+			
Course	On the co	ompletion of the course	the studen	t will be ab	le to		
Outcomes	CO1: Dis	cuss the concepts of O	OPs. Comp	parison with	the previous	sly de	veloped
	languages	S.					
	CO2: Developing the concepts of Classes and object by using real-world examples.						
	-	plement the concepts of					
		veloping the programs u	using the co	oncept of vir	rtual function	and	using the concept
	of file ha	0					
		eraction with the IDE a		understandi	ng the conce	pt of	OOPs.
Examination Mode	Theory/ I	Practical/ Theory + Prac	ctical				
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	E	ABL/PBL
Tools	Quiz	Work				Р	
						R	
Weightage	10%	10%	25%	-	50%	-	5%
Syllabus							СО
							Mapping
Unit 1	Introduc	tion to OOPS & Class	s Concepts				CO1,5
	Evolutior	n Of OOP, OOP Featu	ures Of C+	+, Characte	eristics of O	bject	
	Oriented Language – Objects, Classes, Inheritance, Reusability, User						
	Defined						
	with C++						
		l Objects, Inline Functi		Data, Men	nbers and M	embe	r
		s, Constructors and Des					
		Objects, Array of Poir					
	•	rence, Local and Glo		Nested a	nd Empty C	Class,	
	Preproces						
Unit 2	Console.	I/O &Operator Overl	oading				CO2
	Hierarchy	y of Console Stream C	Classes, Ur	formatted a	and Formatte	ed I/C)
	Operation	ns, Manipulators					
	Overload	able Operators, Overlo	ading-Una	ry and Bina	ry, Arithmeti	ic and	L
	Relationa	l Operators, Overloadin	ng Subscrij	pt, Array, Ir	nsertion,		
	Extraction, New and Delete Operators.						
Unit 3	Friend F	unction and Type Co	nversion 8	z Inheritan	ce		CO3
	Friend Fu Friend Fu	unction, Function Over unction	loading, C	verloading	Operators th	rougl	ı
	Basic Ty	pe Conversion, Conver	rsion Betw	een Objects	s and Basic	Гурез	,
	Conversi	on Between Objects of	Different (Classes			

	Derivation Rules, Different Forms of Inheritance, Roles of Constructors	
	and Destructors in Inheritance	
Unit 4	Virtual Functions & File Handling	CO4
	Virtual Functions and Their Needs, Pure Virtual Function, Virtual	
	Destructor, Virtual Derivation, Abstract Class.	
	Hierarchy of File Stream Classes, Opening and Closing Files.	
	File Modes, Testing for Errors, File Pointers and Their Manipulations,	
	ASCII & Binary Files, Sequential and Random Access Files	
Text Book/s	1. Balaguruswami E, Object Oriented Programming In C++, New	
	Delhi: Tata Mc Graw Hill,2006	
Reference	1. Stroustrup Bjarne, The C++ Programming Language, New Delhi:	
Book/s	Addison-Wesley Professional,2000	
	2. Lafore Robert, Object Oriented Programming in C++. Delhi: Sams	
	Publishing, 2000	
	3. Lippman, Tom Weiss, C++ Primer, New Delhi: Addison Wesley,	
	2005	
	4. Scildt Herbert, C++ The Complete Reference, New Delhi: Tata Mc	
	Graw Hill, 2007	

In	hou		
L	Т	Р	Credit
3	0	2	4

Course Code	PHS	PHS 201						
Course Title	Vib	Vibrations and Waves						
Course Outcomes	CO syste CO CO osci CO	On the completion of the course the student will be able to CO1: Gain knowledge in simple harmonic motion in mechanical and electrical systems CO2: Understand the damping mechanism in simple harmonic motion CO3: Gain knowledge in forced and coupled mechanical and electrical oscillators CO4: Understanding of wave motion concepts and hands on training on the SHM experiments and wave motion related practical						
Examination Mode	The	ory/ Practical/	Γheory + Pr	actical	I		1	
Assessment Tools	Quiz	Assignment	ABL/PB L	Lab Performance	MSE	MSP	ES E	ESP
Weightage	10	-	5	-	25	-	35	25
Syllabus		CO Mapping						CO Mapping
Unit 1	Simple	e Harmonic mo	otion					CO1
Unit 2	Amplit differe Compo harmon Same I Lissarj Dampe	Hooke's law, Equation of Simple harmonic motion, Frequency, Amplitude, Displacement, Velocity, Acceleration, and phase difference of SHM, Energy of a simple harmonic oscillator, Compound pendulum, Torsional pendulum, Kater's pendulum, Simple harmonic oscillations in electrical system, Principle of Superposition Harmonic Oscillations, Superposition of Two Harmonic Motions of Same Frequency, Lissarjous figures and its applications, Anharmonic Oscillations. Damped oscillations						
	Damped simple harmonic motions in mechanical and electrical system, Decay of free vibrations due to damping, Differential equation of damped harmonic motion and its solution, Types of damping, Determination of damping coefficient of a damped vibrating system – Logarithmic decrement, Relaxation time, and Quality Factor, Forced Vibrations – Mechanical and Electrical Forced Oscillator, Transient and steady state oscillations.							
Unit 3	Forced	l oscillations						CO3

	Forced Mechanical Oscillators - Displacement, Velocity and Acceleration, Variation of Displacement, Velocity and Acceleration with driving force frequency, Power supplied to Forced Oscillator by the driving force, Power dissipated against frictional force, Variation of power with driving force frequency, Quality factor, Amplification factor of forced oscillator Coupled Oscillations - Mechanical and Electrical Coupled Oscillators, Stiffness Coupled Oscillators, Potential energy of coupled pendulums, Equation of motion of two coupled	
Unit 4	pendulums, Inductive coupling of electrical oscillators. <i>Wave motion and practicals</i>	CO4
	 Types of Waves - Longitudinal and Transverse Waves, Characteristics of Wave Motion, Differential Equation of Wave Motion, Equation of a Progressive Simple Harmonic Waves, Energy in Progressive waves, Velocities of Wave motion – Particle, Wave, Group Velocities, Relation between Particle Velocity and Wave Velocity, Velocity of Transverse Waves, Characteristics impedance of string, Reflection and Transmission of Waves on a string at a Boundary, Reflection and Transmission Coefficients – Amplitude and Energy, Stationary Waves and Waves on a string of fixed length, Nodes and Anti-nodes, Energy of a Vibrating String 1. To determine the frequency of a tuning fork using a sonometer. 2. To verify the laws of transverse vibrations of stretched strings using a sonometer 3. To determine the frequency of AC mains using a sonometer and an electromagnet. 4. To find the velocity of sound in the material of the given rod with a Kundt's tube. 5. To measure the logarithmic decrement, coefficient of damping, relaxation time and quality factor of a simple damped pendulum. 	
Text Books	 S P Puri, Vibrations and Waves, Macmillan India Ltd.,2004. H. J. Pain, Physics of Vibrations and Waves, John Wiley and Sons, 2013. 	
Reference Book/s	 N.K. Bajaj, Physics of Waves and Oscillations, Tata McGraw Hill, 1998 Vibration and Waves by S Chand Publishers 	

In	hou		
L	Τ	Р	Credit
3	-	-	3

Course Code	MAT1	MAT172						
Course Title	Ordina	ary Differential	Equation	s				
Course Outcomes	On the completion of the course the student will be able to CO1 : find solutions of boundary value problems and understand Basic Existence Theorem. CO2 : check the exactness of differential equation $Mdx + Ndy = 0$, finding integrating factors of non-exact differential equation. CO3 : find solutions of Linear differential equation and understand differential							
	operate			interentiai equal	ion and	anderstar	ia airr	crentiur
	CO4 :			mined coefficier	nts, varia	tion of pa	arame	ters to find
Examination	Theory		0	•				
Mode								I
Assessment Tools	Quiz	Assignment	ABL/P BL	Lab Performance	MSE	MSP	ES E	ESP
Weightage	10	10	5	-	25	-	50	-
Syllabus							•	CO
Unit 1	Bound	lary Value Pro	obloma					Mapping
		l l		s, Basic definition	ns			CO1
				: Interpretation				CO1
		ary Value Prot						C01
		Existence Theo		ement)				CO1
Unit 2		Differential E		/				
			-	ation of Variable	s			CO2
	Exact	Equations, Lin	ear Equati	ons				CO2
	Integra	ating Factors						CO2
	Berno	ulli's equation,	Elementa	ry applications				CO2
Unit 3	LDE v	with constant of	coefficien	ts				
	General Linear equation: General Solutions, Linear independence of solutions CO3							
	Differential operators CO3							
	Linear equations with constant coefficients CO3							
	Auxili	ary equations						CO3
Unit 4				od and Non-line				
				Aethod of Undete	ermined	coefficie	nts	CO4
		ion of Paramete						CO4
	Non-L	inear Equation	S					CO4

Text Books	EARL D. RAINVILLE AND P. E. BENEDIET, <i>Elementary differential equations</i> , Seventh Edition, Macmillian, Publishing Company, 1989.	
Reference Books	□ S. L. ROSS, <i>Differential Equations</i> , 3 rd ed., John Wiley and Sons, India 2004.	

L	Т	Р	Credits	Marks
0	0	2	1	50

Course Title: Object Oriented Programming Structures Laboratory Course Code: CSP104

- Implementation of OOP concepts using C++
- Write program in 'C++' language 🗆 Using input and output statements 🗆 Using control statements.
- Using functions.
- Using array
- Using Classes and implementation of Constructor and Destructor.
- Using files.
- Using OOP's Concepts (Inheritance, Polymorphism, Encapsulation, Friend and Static Functions, Exception Handling)

Semester 3

In	hou	36	
L	Τ	Р	Credit
3	0	2	4

Course Code	CSP203						
Course Title	Database	Concepts					
Course Outcomes	On the co CO1: To CO2: To CO3: To the develo	mpletion of the cou understand the basic understand the basic understand the relat opment of applicatic Master the basics of	c concepts an c concepts of ional databas on software's	d the applica data models e design prin	ations of data s and ER Dia nciples and a	grams. pply normal	
Examination Mode	Theory +	Practical					
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EPR	ABL/PBL
Weightage	10%	10%	25%	-	50%	-	
Syllabus							CO Mapping
Unit 1	An Overv	view of DBMS (08	Hours)				CO1
	Database and Logic	of File Processing S Administrator and cal Data Independe	d his Respon ence	sibilities Ph			
		vel Architecture d rnal Level, Concept		-	Level		
Unit 2		ction to Data Mod					CO2
	-	lationship Model, l omparison of Netv					
	Entity set	e design and ER dia ts – Relationships a Design – Conceptua	and Relation	ship sets – 🛛	ER Design Is	sues –	
Unit 3	Relationa	al Databases (07 H	lours)				CO3
	Introducti f. Domain	on, Terms a. Relat	tion b. Tuple	c. Attribute	d. Cardinalit	y e. Degree	
	Keys (a) S	Super Key (b) Cand	idate Key (c)	Primary K	ey (d) Foreig	gn Key	
		l Algebra Operation e (e.) Intersection (f	· /	· · · ·	(c.) Union (d	.)	
Unit 4	Relationa	al Database Design	(05 Hours)				CO3
						n,	

Unit 5	SQL (Structured Query Language) (08 Hours)	CO4
	Introduction, History Of SQL, Basic Structure, DDL Commands, DML Commands, DCL Command, Simple Queries, Nested Queries, Aggregate Functions, Clauses	
	Join Methods, Union, Intersection, Minus, Views, Sequences, Indexing, Subquery.	
Practicals	List of experiments: Task 1. Introduction to SQL and installation of SQL Server / Oracle. Task 2. Data Types, Creating Tables, Retrieval of Rows using Select Statement Task 3. Conditional Retrieval of Rows, Alter and Drop Statements. Task 4. Working with Null Values, matching a Pattern from a Table Task 5. Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements. Task 6. Set Operators, Nested Queries Task 7. Joins, Sequences. Task 8. Views, Indexes Task 9. Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.	
Text Book/s	 Data base System Concepts, Silberschatz, Korth, McGraw hill, Sixth Edition. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill 3rd Edition. 	
Reference Book/s	 Fundamentals of Database Systems, Elmasri Navathe Pearson Education. An Introduction to Database systems, C.J. Date, A.Kannan, S.Swami Nadhan, Pearson, Eight Edition for UNIT III Simplified Approach to DBMS– Kalyani Publishers 	

L	Τ	Р	Credit
3	0	0	3

Course Code	MAT 27	1							
Course Title	Real Ana	alysis							
Course	On the co	ompletion of the	e course the	e student will be	able to)			
Outcomes		CO1: understand the algebraic and order properties of real numbers							
				ts, limit points a	and iso	lated po	oints of	sets. Students will	
		out open and clo							
				rties of sequenc				1 1	
	series	derstand conver	rgence and	divergence of p	ositive	terms so	eries an	id alternative	
Examination	Theory								
Mode	Theory								
Assessment					MS	MS	ES	ESP	
Tools	Quiz	Assignment	ABL/P	Lab	E	P	E		
			BL	Performanc e					
Weightage	10	10	5	-	25	-	50	-	
Syllabus								CO Mapping	
Unit 1	Introduction to Real Numbers						CO1		
	Review of Algebraic and order properties of <i>R</i> , What is Latex,					CO1			
	Idea of countable sets, uncountable sets. Bounded Sets, Unbounded sets,					CO1			
			e Complet	eness Property of	of	<i>R</i> , Th	e	CO1	
		dean Property							
	-		l Irrational)) numbers in <i>R</i> .				CO1	
Unit 2	Sets in I	R (Intervals):						CO2	
	Neighbor	rhood of a poin	t. Propertie	s of Neighbourh	noods. I	nterior	point.	CO2	
		. Union and Int							
				set. Definition o		ed set.		CO2	
				es theorem for se et and closed set		and		<u> </u>	
		on of closed se	1		. Union	and		CO2	
				s both open & cl	osed.			CO2	
Unit 3	Sequences:				CO3				
	Sequences, Bounded sequence, Convergent sequence,				CO3				
	Limit of a sequence. Limit Theorems, Monotone Sequences, Monotone Convergence Theorem.					CO3			
	Subseque	ences, Diverger		, Monotone Sub ass Theorem for	-		orem	CO3	
				ergence Criterio		11003.		CO3	
		1, 20040	, _ <u>_</u>						

Unit 4	Infinite series: Infinite series, convergence and divergence of infinite series Cauchy Criterion	CO4
	Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test	CO4
	Alternating series, Leibniz test.	CO4
Text Books	 Bartle, R.G. and D.R. Sherbert. Introduction to Real Analysis, 4th Ed. Singapore: John Wiley and Sons (Asia) Pvt. Ltd., 2002. Rudin, W. Principles of Mathematical Analysis, 3rd Edition. New Delhi: McGraw-Hill Inc., 1976. 	
Reference Books	 Berberian, S.K. A First Course in Real Analysis. New York: Springer Verlag, 1994. Thomson, B.S., A.M. Bruckner and J.B. Bruckner. Elementary Real Analysis. Prentice Hall, 2001. Apostol, Tom M., Mathematical Analysis, 2nd Edition, Pearson Education, 1974. 	

In	hou	irs	45
L	Τ	Р	Credit
3	0	2	4

Course Code	PHS20	2						
Course Title	Digital	Systems and A	Applications					
Course		-	,	the student wil				
Outcomes				etween analog a	und digita	l circuits	and gain	
		knowledge abo		-				
				uits and Arithm				
				ircuits like Flip				Dooloon
			-	iential systems b				
				a about memory				
				quential circuits				
		lders, Subtracto			5 1	5 0		0
Examination	Theory							
Mode					-1	-	-1	ſ
Assessment		1			MSE	MS P	ES E	ESP
Tools	Quiz	Assignment	ABL/P BL	Lab Performance				
Weightage	10		5	renormance	25	-	35	25
Syllabus	10		5	-	23	-	33	23 CO
Synabus								Mapping
Unit 1	Digital	Circuits and	Boolean algo	ebra:				FF8
	Difference between Analog and Digital Circuits. Binary Numbers, Decimal to							1
	Binary and Binary to Decimal Conversion, BCD, Octal and Hexadecimal numbers, AND, OR and NOT Gates (realization using Diodes and Transistor);							
	NAND and NOR Gates as Universal Gates; XOR and XNOR Gates and							
	application as Parity Checkers, De Morgan's Theorems; Boolean Laws;							
	Simplification of Logic Circuit using Boolean Algebra; Fundamental Products,							
				uivalent Logic (
		ts Method and	(2)					
		ıgh Map.						
Unit 2	Arit	thmetic circuits	s and Data pr	ocessing circuit	<i>s</i> :			
	Binary	Addition. Bi	nary Subtrac	tion using 2's	Complem	nent;Half	and Full	
	Adders	, Half & Full	Subtractors, 4	-bit binary Add	er/Subtra	ctor; Basi	c idea of	2
	Multip	lexers, De-mul	tiplexers, De	coders, Encoders	S			

	 Flip Flops: SR, D, and JK Flip-Flops; Clocked (Level and Edge Triggered) Flip-Flops, Preset and Clear Operations, Race-around conditions in JK Flip-Flop, M/S JK Flip-Flop. Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out andParallel in-Parallel-out (only up to 4 bits). Counters (4 bits): Ring Counter, Asynchronous counters, Decade Counter. Synchronous Counter. Computer Organization: Input/output Devices; Data storage (idea of 	3
	RAM and ROM); Computer memory,	
Unit 4	Digital Electronic Experiments:	
	 To verify the truth table of AND, OR, NOT, NAND, NOR Gate USING DTL Kit. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design and verify truth table of Half Adder, Full Adder and 4-bit binary Adder. Parity generator and checker. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. To build JK Master-slave flip-flop using Flip-Flop ICs To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. 	4
Text Books	 G. S. Bains, Digital Circuits and Logic Design, PBS Education, 2013 A.A Kumar, Fundamentals of digital Circuits, Prentice- Hall India, 2004 R. L. Tokheim, Experiments Manuals for Digital Electronic, MCGraw Hill, 2003 	
Reference Books	 A. P. Malvino and D. P. Leach, Digital Principles and Applications. New Delhi: Tata McGraw Hill, 1986. J. Milliman and H. Taub, Pulse, Digital and Switching Waveforms. New Delhi: Tata McGraw Hill, 1992. A. Mottershead, Electronic Devices and Circuits. New Delhi: Prentice Hall, 1977. 	

Semester 4

G	¥
	\searrow
0,	AVUNIVERSITY

L	Т	P	Credits
4	0	0	4

DAV UNIVERSITY							
Course Code	CSP206						
Course Title	Operating S	Systems					
Course Outcomes	Comparin CO3-To d CO4-To d	nderstanding CPU g CPU Scheduling escribe the role of p efining I/O systems ation of various Dis	Algorithms. S paging, segmes, Device Mar	Solve Deadlo entation and nagement Po	ock Detection virtual memo licies and Sec	n Problems. ory in operat	ting systems.
Examination Mode	Theory+ H	Practical					
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EPR	ABL/PBL
Weightage	10%	10%	25%	-	50%	-	
Syllabus							CO Mapping
Unit 1		ion to Operating S OS, History of OS Functions/operation Traps, architectur	S, Types of O ons of OS, U	S ser services/j	obs, system	calls	CO1
	Process M	 fanagement Process overval Interrupt mech 	,	states			
Unit 2	Schedulin Pre-empti Levels of Process	eduling and Proce g algorithms ve scheduling & No schedulers Synchronization, C synchronization pro	on-Pre-emptiv	ve scheduling	g 2	on problem	CO2
	System D Deadlock		eadlock prev	ention and av			

Unit 3	Storage Management (15 Hours)	CO3
	☐ Storage allocation methods: Single contiguous allocation, Multiple contiguous allocation	
	Memory Management • Paging, Segmentation combination of Paging and Segmentation • Virtual memory concepts, Demand Paging, Page replacement Algorithms • Thrashing. Address Protection, • Cache memory, hierarchy of memory types, associative memory.	
Unit 4	File Management (12 Hours)	CO4
	 Overview of File Management System Disk Space Management, Directory Structures Protection Domains, Access Control Lists, Protection Models Queue management, File and directory systems 	
	 Device Management Goals of I/O software, Design of device drivers, Device scheduling policies FCFS, SSTF, SCAN, CSCAN, LOOK, CLOOK 	
Text Book/s	1. Galvin and Silberschatz A., <i>Operating System Concepts</i> , Eigth Addition, New York: J. Wiley & Sons, 2009.	
Reference Book/s	 Crowley, <i>Operating Systems: A Design Oriented Approach</i>, New Delhi: Tata McGraw Hill, 2008. Donovan J.J, <i>Systems Programming</i>, New York: McGraw 	
	 Hill, 1972. 3. Dhamdhere. D.M, System Programming and Operating Systems, New Delhi: Tata McGraw Hill, 1999. 4. Madnick and Donovan, Operating System, New York: 	
	 McGraw Hill, 1978. 5. Beck Leland L., <i>System Software</i>, Delhi: Pearson Education, 2000. 6. Henson P.B., <i>Operating System Principles</i>, Delhi: Prentice 	
	 Hall 7. Tenenbaum A.S., <i>Operating System: Design and Implementation</i>, New Delhi: PHI, 2013. 	
	8. Silberschatz, Abraham, et al. Operating System Concepts. United Kingdom, Wiley, 2021.	

Hours			36			
3	0	2	4			

Course Code	CSP204	CSP204						
Course Title	Data Stru	Data Structures						
Course Outcomes	CO1: Stu on variou CO2: Stu Quick So CO3: Stu problem o	On the completion of the course the student will be able to CO1: Student will be able to handle operation like searching, insertion, deletion, traversing on various Data Structures; CO2: Student will able to write an algorithm Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort; CO3: Students will be able to choose appropriate Data Structure as applied to specific problem definition; CO4: Implement Various searching algorithms and become familiar with their design						
Examination Mode	Theory ar	nd Practical						
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EPR	ABL/PBL	
Weightage	10%	10%	25%	-	50%	-		
Syllabus								
Unit 1	Introduc	tion (08 Hours)					CO1	
	Various I	and Composite Data Structures, Con ity, Time-Space Tra ns						
	String: S Operation	trings as ADTs, Rejus.	presentation a	and Manipula	ation, String			
	Arrays Arrays Defined, Representing Arrays in Memory, Various Operations on Linear Arrays. Bubble Sort. Linear Search, Binary Search Records, Matrices, Sparse Matrices							
Unit 2	Linked l	Lists, Stacks, Queu	ies (08 Houi	rs)			CO2	
	linked Lis Collection	Linked Lists, Stacks, Queues (08 Hours) Types of Linked Lists, Representing Linked Lists in Memory, traversing a linked List, Searching in a linked list, Memory Allocation and Garbage Collection, Insertion and deletion in a linked list. Circular Linked List. Advantage of Using Linked Lists Over Arrays, Various Operation on Linked Lists						

	Stacks Description of Stack Structure, Implementation of Stack Using Arrays and Linked Lists, Applications of Stacks: Expression Conversion and evaluation –	
	corresponding algorithms. QuickSort	
Unit 3	Queues, Trees, Graphs, Heaps (08 Hours)	CO3
	Queues Implementation of Queue Using Linked Lists, Circular Queues, De-Queues,	
	Priority Queues.	
	Trees Description of Tree Structure and Its Terminology, Binary Tree, representation in memory, Traversing Binary Trees, Traversal Algorithms using Stacks.	
	Graphs Representation of Graphs and Applications: Adjacency Matrix, Path Matrix Warshall's Algorithm, Linked Representation of a Graph Traversing a Graph: DFS and BFS, Spanning Trees. Heaps Description of Heap Structure, Implementing Heaps Using Arrays	
Unit 4	Searching and Sorting Algorithms (08 Hours)	CO4
	Linear Search, Binary Search Insertion Sort, Selection Sort, Bubble Sort, radix Sort, Merge Sort, Quick Sort Files Operations on Files, Types of Files File Organizations: Sequential Files, Indexed Sequential File, Directed Files and Multikey Files	
Practical:	List of Experiment: Task 1: Write a program to insert a new element at end as well as at a given position in an array. Task 2: Write a program to delete an element from a given array whose value is given or whose position is given. Task 3: Write a program to find the location of a given element using Linear Search. Task 4: Write a program to find the location of a given element using Binary Search. Task 5: Write a menu driven program to perform following insertion operations in a single linked list: i. Insertion at beginning ii. Insertion at end iii. Insertion after a given node iv. Traversing a linked list Task 6: Write a program to implement push and pop operations on a stack using linear array. Task 7: Write a program to convert an infix expression to a postfix expression using stacks. Task 8: Write a program to evaluate a postfix expression using stacks. Task 9: Program to sort an array of integers in ascending order using bubble sort. Task 10: Program to traverse graphs using BFS.	
Text Book/s	Task 12: Program to traverse graphs using DFS. "Data Structures with C (Schaum's Outline Series)", Seymour Lipschutz, 1st edition, McGraw Hill Education	

Reference	1) "Fundamentals of Data Structures", Illustrated Edition by Ellis	
Book/s	Horowitz, Sartaj Sahni, Computer Science Press.	
	2) Algorithms, Data Structures, and Problem Solving with C++",	
	Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing	
	Company. 3) "Classic Data Structures", Samanta and Debasis, 2nd edition,	
	PHI publishers.	
	4) Karumanchi, Narasimha. Data Structures and Algorithms Made Easy: To	
	All My Readers : Concepts, Problems, Interview	
	Questions. India, CareerMonk Publications, 2016.	

In	hou	36	
L	Т	Р	Credit
3	0	2	4

Course Code	CSP208							
Course Title	Compute	er Networks						
Course Outcomes Examination	CO1: Inte discuss va CO2: Inte CO3: Inte layer. CO4: Fun	mpletion of the cour eraction with differen- arious network mode eraction with data lin eraction various Rou actionality of Transpo- orld scenarios.	nt hardware els. k layer and nting algorit	devices presented its protocols thms. In add	ent in compu ition to that	functionali	y of network	
Mode	Theory +	Tactical						
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EPR	ABL/PBL	
Weightage	10%	10%	25%	-	50%	-		
Syllabus								
Unit 1		duction to Data Con conents of Data Com					CO1	
	Review of Network Hardware: LAN, MAN, WANWireless networks, InternetworksReview of Network Software: Layer, Protocols, Interfaces and ServicesReview of Reference Models: OSI, TCP/IP and their comparisonPhysical LayerTransmission Media: Twisted pair, Coaxial cable, Fibre optics,Wireless transmission (Radio, Microwave, Infrared)							
Unit 2		nk Layer (08 Hours		- · · · · · · · · · · · · · · · · · · ·			CO2	
	 Error Correction and Detection Framing, Noiseless Channels and Noisy Channels Multiple Access Protocol (ALOHA, CSMA, CSMA/CD, CSMA/CA) Wired LANs 							
Unit 3	Network	Layer (08 Hours)					CO3	
	 Logical Addressing, Internet Protocol IPv4 and IPv6 Design Issues, Routing Algorithms (Shortest Path, Flooding, Distance Vector, Hierarchical, Broadcast, Multicast) Internetworking, IP Protocol, ARP, RARP. 							
Unit 4	Transpor	rt Layer (08 Hours	,				CO4	
	 Flow Control, Buffering Internet Transport Protocol (TCP and UDP) 							

	Congestion Control Algorithms (Leaky bucket, Token bucket,						
	Load shedding)						
	Application Layer						
	□ Domain name system, Email, File transfer protocol □						
	HTTP, HTTPS, World Wide Web.						
Practical:	List of Experiment:						
	Task 1. Specifications of latest desktops and laptops.						
	Task 2. Familiarization with Networking Components and devices: LAN						
	Adapters, Hubs, Switches, Routers etc.						
	Task 3. Familiarization with Transmission media and Tools: Co-axial cable,						
	UTP Cable, Crimping Tool, Connectors etc.						
	Task 4. Preparing straight and cross cables.						
	Task 5. Study of various LAN topologies and their creation using network						
	devices, cables and computers.						
	Task 6. Configuration of TCP/IP Protocols in Windows and Linux.						
	Task 7. Implementation of file and printer sharing.						
	Task 8. Designing and implementing Class A, B, C Networks						
	Task 9. Subnet planning and its implementation						
	Task 10. Installation of ftp server and client						
Text Book/s	Tanenbaum. Andrew S., Computer Networks, 4th Edition, New Delhi: PHI,						
	2013.						
Reference	Forouzan B. A., Data Communications and Networking, Fourth						
Book/s	Edition, New Delhi: Tata McGraw Hill, 2003.						
	• Stalling W, Data & Computer Communications, New Delhi: PHI,						
	Ninth Edition 2010.						
	Scott, Russell. Computer Networking: This Book Includes: Computer						
	Networking for Beginners and Beginners Guide (All in One). N.p.,						
	Russell Scott, 2021.						
	·						

In	In hours		36
L	Т	Р	Credit
3	0	0	3

Course	MAT272									
Code										
Course Title	Analytica	Analytical Geometry								
Course		On the completion of the course the student will be able to								
Outcomes		CO1: Understand the fundamental concepts of pair of straight lines and circle								
		CO2: Understand the conics (parabola, ellipse and hyperbola) and related notions								
		derstand the sphere								
	1	derstand the cylinde	er and cone	and its pr	operties					
Examination	Theory									
Mode		· · · ·	1.697	1.000						
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL			
Tools	Quiz	Project Work	0.50/		7 00/		5 0/			
Weightage	10%	10%	25%	-	50%	-	5%			
Syllabus							CO Mapping			
Unit 1	Pair of	Straight lines a	nd Circle							
	0	of Axes- Translation	and rotation	on of axes	, general		CO1			
		nation, invariants								
		traight lines- Homo				-	CO1			
		ween pair of straigh								
		, joint equation of li	nes joining	origin to	the inters	section of a				
	line and a	eneral equation of c	virala tanga	nte and n	ormal no	ir of	CO1			
		from a given point,					COI			
		of chord in terms of			c and por	<i>a</i> ,				
		intersection and ort			cles radi	ical axis	CO1			
		amily of circles.	inogonanty	01 000 011	eies, iuui	icui unio,	001			
Unit 2		la, Ellipse and H	Ivperbola	a						
		equation of Parabo			al, tangen	ts from a	CO2			
_		ord of contact, pole	-		-					
	-	, diameter	-	-						
	Standard	equation of Ellipse	, tangent an	d normal,	tangents	from a	CO2			
	-	ord of contact, pole	-	-		n terms of				
		, diameter, conjugat								
		equation of Hyperb	, 0		, 0		CO2			
	point, chord of contact, pole and polar, equation of chord in terms of									
	midpoint, diameter, conjugate diameters of hyperbola.Classification of the second degree equation $S = ax^2 + 2hxy +$ CO2									
		xy +	CO2							
Unit 3	$by^2 + 2g$									
	Sphere and coneSphere- Equation of a sphere and its properties, the tangent plane,						CO3			
	plane of		, and no pro	Perces, u	ie ungen	· Piurie,				
	_	plane, angle of inte	rsection of	two spher	es		CO3			
	-	of a cone, envelopi		CO3						
<u> </u>	-1"""									

	intersection of cone with a line, right circular cone	CO3
Unit 4	Cylinder and Coinicoids	
	equation of cylinder	CO4
	enveloping cylinder, right circular cylinder	CO4
	Conicoids- General equation of the second degree in three variables, equations of central conicoids (the ellipsoid, hyperboloid of one and two sheets)	CO4
	intersection of line with a conicoid	CO4
Text Books	 Narayan, S. and P.K. Mittal, Analytical Solid Geometry, S. Chand & Company Pvt. Ltd., New Delhi, 2008 P.K. Jain and Khalil Ahmad : A Text Book of Analytical Geometry of Two Dimensions, Wiley Eastern Ltd., 1999 	
Reference Books	 Gorakh Prasad and H.C. Gupta : Text Book on Coordinate Geometry, Pothishala Pvt. Ltd., Allahabad, 1955. S. L. Loney : The Elements of Coordinate Geometry, Macmillan and Company, London, 2 nd Edition 2007. 	

In	hou		
L	Τ	Р	Credit
3	0	2	4

Course Code	PHS 211									
Course Title	Optics									
Course	On the cor	On the completion of the course, the student will be able to								
Outcomes			-	omena and measured resolving power			ques			
		-	-	e refraction, and			y etc.			
				lengths and option			•			
Examination	Theory + F	Practical								
Mode	lincory									
Assessment					MSE	MSP	ESE	ESP		
Tools	Quiz	Assignment	ABL/PBL	Lab Performance						
Weightage	10		5	-	25	-	35	25		
Syllabus								CO Mapping		
Unit 1	Interferer	ice								
			-	and division of		-	•	1		
		·		Airror and Fresh		± ·				
	U			atment, Interfere			,			
	parallel an									
				s (Fizeau Fringe			-			
		ent of wave eter: Idea of fo	•	nd refractive	index,	Miche	ison s			
			-	elength differen	nce Ref	ractive	indev			
		lity of fringes.	ingui, wav	cicligui unicicli	ice, Rei	lactive	muex,			
Unit 2		nd Fraunhoffe	er diffracti	0 n						
	Difference	2								
	Single slit; Circular disc, Airy disc, Double Slit. Multiple slits and									
	Diffraction grating, Diffraction of N slits and its discussion, Diffraction grating, Missing orders, dispersive power, prism and grating, Rayleigh									
	0									
		01		olving power o	-					
	grating, Fresnel Diffraction, Huygen-Fresnel theory, Fresnel's principle of diffraction, Half-period zones, Zone plate, Diffraction at circular									
	aperture, Diffraction at opaque circular disc, Fresnel Diffraction pattern									
	of a straight edge, a slit and a wire,									
	Cornu's sp									
Unit 3	Polarizati	on								
		-		lane polarized li rization, Polariz			on and	3		

	transmission and reflection, Malus Law, Brewster's Law, Polarization by	
	refraction, anisotropic crystals, Theory of double refraction, Elliptically	
	and circularly polarized light, Quarter wave and half wave plates,	
	Production and detection of polarized light. Nicol Prism,	
	Optical activity, specific rotation. Half shade polarimeter	
Unit 4	Practical Experiments	
	 To determine wavelength of sodium light using Newton's Rings. To determine the wavelength of Laser light using Diffraction of Single Slit. 	4
	3. To study the wavelength of spectral lines of sodium light using plane transmission grating.	4
	 To study the specific rotation of sugar solution Laurent's half shade polarimeter method 	
	5. To compare the focal length of two lenses by Nodal slide method.	
Text Books	 N. Subramanayam, B. Lal, & M. N. Avadhamulu, Textbook of Optics. New Delhi: S. Chand & Company, 2006. 	
	2. A. Ghatak, Optics. New Delhi: Tata McGraw Hill Publication, 2008	
Reference Books	1. F. A. Jenkins and H. E. White Fundamentals of Optics, McGraw- Hill , 1976.	
	2. H. R. Gulati and D. R. Khanna Fundamentals of Optics, R. Chand Publications, 1991.	

L	Τ	Р	Credit
3	0	2	4

Course	PHS2()4						
Code		-						
Course	Therm	al and Statistical	l Physics					
Title								
		-		student will be able				
Outcome			-	s of thermodynami			•	
S		-	•	clic processes, ent	ropy, an	d the lav	vs of the	ermodynamics.
		Also, study the Ca	arnot engine	and heat pump.				
			-	mic relations and t	11			
		• 1		ods to achieve very		-		
	CO3:	Explain the statist	tical behavio	or of Maxwell-Bol	tzmann,	Bose-Ei	nstein, a	and Fermi-
		Dirac statistics and						
1	CO4: A	Apply analytical te	echniques an	d graphical analys	is to the	experim	ental da	ata.
	Theory	+ Practical						
on Mode								
Assessme					MSE	MSP	ESE	ESP
	Quiz	Assignment	ABL/PBL	Lab		IVISE	LJL	LJF
	Q	, 1001 <u>9</u>		Performance				
Weightag	10		5	-	25	-	35	25
е								
Syllabus			·					CO Mapping
Unit 1	BASIC THERMODYNAMICS							
	Laws o	of Thermodynami	cs, zeroth la	w, indicator or PV	/ diagrai	ns, work	done,	1
				ot's engine. Entrop				
	variable; reversible and irreversible processes, Principle of increase of entropy, Statistical basis of entropy, Thermodynamic scale of temperature; its identity with perfect gas scale, impossibility of attaining absolute zero.							
Unit 2	MAXV	VELL RELATIO	DNS					
				quilibrium of the				2
	Maxwell's equations, Clausius-Clapeyron equation, Joule Thomson effect, Use of Joule Thomson effect in liquefaction of gasses, Low temperatures:							
	Production and measurement of very low temperatures, adiabatic demagnetization, Phase transitions of first and second orders, phase diagrams of Helium, Gibbs phase rule and its applications.							
		uni, Oroos pilase i		ippiloanons.				
1								

Unit 3	STATISTICAL PHYSICS	
	Scope of statistical physics, micro and macro states, thermodynamic probability distribution of n particles in two compartments, deviation from the state of maximum probability; equilibrium state of dynamic system, distribution of distinguishable particles in compartments and cells, phase space and its division into cells, Boltzmann statistics for ideal gas, Bose-Einstein statistics and its applications to photon gas, Blackbody Radiation, Spectral distribution of Blackbody radiation, Planck's Law of Blackbody Radiation, Fermi Dirac statistics and its application to electron gas, comparison of the three statistics.	3
Unit 4	Practical Experiments	
Text Books	 To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its two Junctions. To determine the value of Stefan's Constant of radiation. To find the thermal conductivity of copper Measurement of Planck's constant using black body radiation. C. S Helrich, Modern Thermodynamics with Statistical Mechanics. Berlin: Springer, 2009. R.H. Swendsen, An Introduction to Statistical Mechanics & 	4
	Thermodynamics. Oxford: Oxford University Press, 2012.3. V.S. Bhatia, Statistical Physics and Thermodynamics. New Delhi: Vishal Publication, 1986.	
Reference Books	 M.W. Zemansky, and R.H. Dittman, Heat and Thermodynamics. New York: McGraw-Hill, 1996. S Lokanathan.andR. S. Gambhir, Statistical and Thermal Physics. New Delhi: Prentice Hall, 1991. 	