
Department of Mathematics

Scheme and Syllabi

For

B.Sc. (Mathematics)/B.Sc. (Hons.) Mathematics/ B.Sc. (Hons.)Mathematics with Research (As per NEP-2020)

Batch-2023

Department of Mathematics

Vision

The department envisions to impart quality mathematics education and to inculcate the spirit of research through innovative teaching and research methodologies. The goal of the department is to provide excellent knowledge of mathematical softwares and tools to equip the students with conceptual understanding and computational skills so that they can become proficient in mathematics to solve real life problems.

Mission

M1: Enhance the capacity for critical thinking, problem-solving skills, and effective communication of mathematical concepts.

M2: Understand the concepts of mathematics for developing the advanced formulation in learning areas of other disciplines.

M3: Provide the knowledge of mathematical tools to equip the students with required skills for research and employability.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

PEO1: To lay the foundation of Mathematics and build up the logical and analytical ability of students.

PEO2: To pave the way for higher education programmes and continue research at institutions of national and international repute.

PEO3: To enhance the capability of students to formulate and analyze the mathematical models in real-life problems.

PEO4: To develop teaching & computational skills and subject knowledge of their course of study, which shall help them to be a successful professional.

PEO5: To inculcate the leadership qualities along with ethical attitude and teamwork skills.

PROGRAMME OUTCOMES (POs)

After the successful completion of undergraduate course, B.Sc./B.Sc. (Hons.)/B.Sc. (Hons.) with Research Mathematics, graduates will be able to:

PO1: Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.

PO2: Effective Communication: Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.

PO3: Social Interaction: Elicit views of others, mediate disagreements and help reach conclusions in group settings.

PO4: Effective Citizenship: Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

PO5: Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.

PO6: Environment and Sustainability: Understand the issues of environmental contexts and sustainable development.

PO7: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes.

PROGRAMME SPECIFIC OUTCOMES (PSO's)

PSO1: To apply, analyze & evaluate using the knowledge and theories of Calculus, Algebra, Mathematical logic, Set theory, Number theory, Analytical Geometry, Abstract structures, Linear Algebra, Analysis, Mechanics etc.

PSO2: To simulate and analyze real time problems using Mathematical models and find solutions using the application of Mathematics in Sciences, Engineering and Technology.

PSO3: To utilize computational tools and software, such as MATLAB, to perform numerical computations, visualize data, and solve mathematical problems efficiently.

Code	Definitions
L	Lecture
Т	Tutorial
Р	Practical
HS Courses	Humanities & Social Science
BS	Basic Science Courses
ES	Engineering Science Courses
PC	Program Core Courses
PE	Program Elective Courses
OE	Open Elective Courses
EEC	Employment Enhancement Courses (Project/Summer
AEC-C	Internship/Seminar)
VAC-C	Ability Enhancement Course-Common
	Value Added Course-Common

PEOs	PEO1	PEO2	PEO3	PEO4	PEO5
POs					
P01	Y		Y	Y	Y
PO2	Y	Y	Y	Y	Y
PO3	Y		Y	Y	Y
PO4		Y	Y	Y	Y
PO5	Y	Y	Y	Y	Y
PO6	Y	Y	Y	Y	Y
P07	Y	Y	Y		Y

Mapping of PEO with PO

Mapping of PEO with PSO

PSOs PEOs	PSO1	PSO2	PSO3
PEO1	Y	Y	Y
PEO2	Y	Y	Y
PEO3	Y	Y	Y
PEO4	Y	Ŷ	Y
PEO5	Y	Y	Y

	Credit Details		
S.No.	Course Category	Course Category Abbreviation	3-Yr B.Sc. (Credits)
1.1	Discipline Specific Courses-Core	DSC	67
1.2	Discipline Specific-Skill Enhancement Courses- Core	DS-SEC	2
1.3	Discipline Specific-Value Added Courses-Core	DS-VAC	-
	Total of Discipline Specific Core Courses		69
2.1	Minor Courses	MC	-
	OR		
2.2	Interdisciplinary Courses	IDC	16
3	Multidisciplinary Courses	MDC	9
4	Ability Enhancement Course- Common	AEC-C	8
5	Value Added Courses-Common	VAC-C	6
6.1	Skill Enhancement Courses- Common	SEC-C	8
6.2	Skill Enhancement Courses-Summer Internship	SEC-SI	4
	Total of Skill Enhancement Courses		
	Total Credits		120

Scheme of Courses- Bachelor of Mathematics

Scheme of Courses- Bachelor of Mathematics

	Cr	edit Details		
S.No.	Course Category	Course Category Abbreviation	4-Yr B.Sc. (Hons.)/ (Credits)	4-Yr B.Sc. (Hons/ (Hons. with Res.) (Credits)
1.1	Discipline Specific Courses-Core	DSC	109	95
1.2	Discipline Specific-Skill Enhancement Courses-Core	DS-SEC	-	2
1.3	Discipline Specific-Value Added Courses-Core	DS-VAC	-	-
	Total of Discipline Specific Co	re Courses	109	97
2.1	Minor Courses	MC	-	-
		OR		
2.2	Interdisciplinary Courses	IDC	16	16
3	Multidisciplinary Courses	MDC	9	9
4	Ability Enhancement Course- Common	AEC-C	8	8
5	Value Added Courses-Common	VAC-C	6	6
6.1	Skill Enhancement Courses- Common	SEC-C	8	8
6.2	Skill Enhancement Courses- Summer Internship	SEC-SI	4	4
6.3	Skill Enhancement Courses- Research Project/Dissertation	SEC-RP	-	12
	Total of Skill Enhancement Cou	rses		
	Total Credits		160	160

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT101	Elementary Algebra	4	0	0	4	DSC
2	MAT102	Calculus	4	0	0	4	DSC
3	MAT103	Basics of MATLAB	0	0	4	2	DS-SEC
4		Multidisciplinary Courses	-	-	-	3	MDC
5		Ability Enhancement Course- Common	-	-	-	2	AEC- C
6		Skill Enhancement Courses- Common	-	-	-	2	SEC-C
7		Value Added Courses- Common	-	-	-	3	VAC-C
						20	

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT111	Theory of Equations	4	0	0	4	DSC
2	MAT112	Ordinary Differential Equations	4	0	2	5	DSC
3		Multidisciplinary Courses	-	-	-	3	MDC
4		Ability Enhancement Course- Common	-	-	-	2	AEC- C
5		Skill Enhancement Courses- Common	-	-	-	3	SEC-C
6		Value Added Courses- Common	-	-	-	3	VAC-C
						20	

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT201	Partial Differential Equations	4	0	2	5	DSC
2	MAT202	Analytical Geometry	4	0	0	4	DSC
3	PHS153	Optics and Lasers	3	0	2	4	IDC
4		Multidisciplinary Courses	-	-	-	3	MDC
5		Ability Enhancement Course- Common	-	-	-	2	AEC- C
6		Skill Enhancement Courses- Common	-	-	-	3	SEC-C
						21	

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT211	Group Theory-I	4	0	0	4	DSC
2	MAT212	Elementary Real Analysis	4	0	0	4	DSC
3	MAT213	Numerical Analysis	4	0	2	5	DSC
4	PHS152	Modern Physics	3	0	2	4	IDC
5		Ability Enhancement Course- Common	-	-	-	2	AEC- C
						19	

			In hours			In hours			
S.No	Pape r	Course Title	L	Т	Р	Cr.	Course Category		
	Code								
1	MAT301	Theory of Real Functions	4	0	0	4	DSC		
2	MAT302	Group Theory-II	4	0	0	4	DSC		
3	MAT303	Probability Theory	4	0	0	4	DSC		
4		Electricity and Magnetism and Electronics	3	0	2	4	IDC		
5		Internship/Workshop/Training	-	-	-	4	SEC-SI		
						20			

				In ho	ours		
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT311	Riemann Integration	4	0	0	4	DSC
2	MAT312	Multivariate Calculus	4	0	0	4	DSC
3	MAT313	Ring Theory and Linear Algebra	4	0	0	4	DSC
4	MAT314	Mechanics	5	1	0	6	DSC
5		Mechanics and Waves	3	0	2	4	IDC
						20	

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT401	Algebra	4	0	0	4	DSC
2	MAT402	Mathematical Statistics	4	0	0	4	DSC
3	MAT403	Metric Spaces	4	0	0	4	DSC
4	MAT404	Number Theory	4	0	0	4	DSC
5	MAT405	Complex Analysis	4	0	0	4	DSC
						20	

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT411	Advanced Linear Algebra	4	0	0	4	DSC
2	MAT412	Riemann Stieltjes	4 0 0			4	DSC
		Integration and Functions of					
		Several Variables					
3	MAT413	Differential Geometry	4	0	0	4	DSC
4	MAT414	Mathematical Methods	4	0	0	4	DSC
5	MAT415	Discrete Mathematics	4	0	0	4	DSC
						20	

L-Lectures T-Tutorial P-Practical Cr.- Credits

Semester 8 with Research

			In hours				
S.No	Paper Code	Course Title	L	Т	Р	Cr.	Course Category
1	MAT411	Advanced Linear Algebra	4	0	0	4	DSC
	MAT412	Riemann Stieltjes	4	0	0	4	DSC
2		Integration and Functions of					
		Several Variables					
		Skill Enhancement Courses-					
3	MAT421	Research	-	-	0	12	SEC-RP
		Project/Dissertation					
						20	

In	hou	Irs	
L	Т	Р	Credit
4	0	0	4

Course Code	MAT1	MAT101							
Course Title	Eleme	Elementary Algebra							
Course	On the	e completion of	the cour	se the student wi	ill be abl	e to			
Outcomes	CO1:	Understand De	e Moivre'	s theorem and it	s applica	tions			
	CO2:	Understand pro	operties o	of congruence and	d Fundar	mental th	eorem of	Arithmetic	
	CO3:	Discuss the n	natrices,	row and colum	n rank,	echelon	form, no	rmal form,	
	solutio	on of system of	linear eq	uations					
	CO4:	Determine eig	envalues	and correspond	ing eige	nvectors	for a squ	uare matrix	
	and ap	plication of Ca	yley Han	nilton Theorem					
Examination	Theory	у							
Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/P	Lab					
			BL	Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus								CO	
								Mapping	
Unit 1		oivre's Theore							
•	Deepe applica		nplex ni	umbers, De Mo	oivre's t	theorem	and its	CO1	
•	Primit	ive nth roots of	f unity					CO1	
•	Expan	sion of in te	rms of co	sines and sines of	of multip	ble of θ		CO1	
•	Summ	ation of a trigo	nometric	series.				CO1	
Unit 2	Divisi	bility Theory							
•	Divisi	on algorithm, C	Greatest c	ommon divisor	of intege	rs		CO2	
•	Euclid	lean algorithm						CO2	
•	Congr	Congruence and its Basic properties CO2						CO2	
•	Funda	Fundamental Theorem of Arithmetic (Statement) and related problems CO2							
Unit 3		of a Matrix							
•			onal Mat	rices and their	properti	es, Simi	larity of	CO3	
	Matric								
•	Rank of rank	of a matrix, Ro	w rank, C	Column rank, equ	ivalent n	natrices	and their	CO3	
•	Echelo	on form of a ma	atrix, nori	mal form of a ma	atrix			CO3	

B.Sc./B.Sc. (Hons.)/B.Sc. (Hons.) with Research Mathematics

s), solution sets of linear systems						
Characteristic Equation						
Characteristic Equation of a matrix, Cayley-Hamilton Theorem.						
values, Eigen Vectors	CO4					
alization of Matrices	CO4					
values of special (Orthogonal, Unitary etc.) matrices	CO4					
ay, David C. Linear Algebra and its Applications, 5th Ed.						
earson Education Asia, Indian reprint, 2023.						
ipschutz, Seymour and Lipson, Marc Schaum's Outline of						
inear Algebra, 3 rd Edition, Mcgraw Hill Education, 2017.						
avid M. Burton, Elementary Number Theory, 7 th Edition,						
IcGraw Hill Education, 2017.						
itu Andreescu and Dorin Andrica, Complex Numbers from A to						
, 2 nd Edition, Birkhauser, 2014.						
	-					

In	hou		
L	Т	Р	Credit
4	0	0	4

Course Code	MAT1	MAT102							
Course Title	Calcul	Calculus							
Course	On the	completion of t	the course	the student will	be able	to			
Outcomes	CO1: 1	Understand con	cept of lim	its, continuity a	nd diffe	rentiabil	ity.		
	CO2 :	Employ the co	oncepts of	asymptotes, a	nd infle	exion po	oints in	tracing of	
	cartesi	an curves.							
	CO3 : 1	Evaluate integra	als and its a	application to fi	nd arc le	ength an	d area u	nder curve.	
	CO4: 1	Understand cont	tinuity and	differentiability	y in term	ns of lim	its of ve	ector valued	
	functio	ons.							
Examination	Theory	1							
Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/P	Lab					
			BL	Performanc					
				e					
Weightage	10	10	5	-	25	-	50	-	
Syllabus								СО	
								Mapping	
Unit 1	Limit,	Continuity and	d Differen	tiability					
•	$\epsilon - \delta$	definition of L	imit, one-	sided limit, lin	nits invo	olving in	nfinity,	CO1	
	continu	uity and differer	ntiability.						
•	Higher	order derivativ	es of hype	rbolic and expo	nential f	function	s.	CO1	
•	Leibni	Leibnitz rule and its applications.						CO1	
•	L' Hospital's rule.						CO1		
Unit 2	Tracin	Tracing of Curves							
•	Concar	Concavity and convexity of the curve. CO2							
•	Inflect	ion points.						CO2	
•	Asymp	ototes of curves.						CO2	
	0	Asymptotes of curves.CO2Curve tracing in Cartesian coordinates.CO2							

Unit 3	Arc length and surfaces of Revolution					
•	Parameterizing a curve, arc length, arc length of parametric curves.	CO3				
•	Area of surfaces of revolution. Techniques of sketching conics.					
•	Rotation of axes.					
•	General equation of second-degree, classification into conics using the discriminant, polar equations of conics.					
Unit 4	Vector Valued Functions					
•	Introduction to vector functions, operations with vector-valued functions, Triple product.	CO4				
•	Limits and continuity of vector valued functions.	CO4				
•	Differentiation and integration of vector valued functions	CO4				
•	Tangent and normal components of acceleration.	CO4				
Text Books	 Thomas, George B., and Finney Ross L. Thomas' Calculus. Pearson Education, 12th Ed, 2013. Narayan, S. and Mittal, P.K. Integral Calculus. S. Chand and Company Ltd, 2005. 					
Reference Books	 2005. Anton, H., and I. Bivens, and S. Davis. Calculus. Singapore: John Wiley and Sons (Asia) P. Ltd., 10th Ed. 2015. Courant, R., and F. John. Introduction to Calculus and Analysis. New York: Springer-Verlag (Volumes I & II), 2014. 					

In	hou	rs	
L	Τ	Р	Credit
0	0	4	2

Course Code	MAT1	MAT103							
Course Title	Basics	Basics of MATLAB							
Course	On the	completion of	the cour	se the student wi	ll be abl	e to			
Outcomes	CO1 :	Make use of ar	rays in N	IATLAB					
	CO2 :	Do 2D plotting	in MAT	LAB					
	CO3 :	Do 3D plotting	in MAT	LAB					
	CO4 :	Understand mu	ltiple and	d parametric plot	s of 2D	and 3D			
Examination	Practic	cal							
Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/	Lab					
			PBL	Performance					
Weightage	-	-	-	20	-	30	-	50	
Syllabus									
								Mapping	
Unit 1	Matri	ces and Arrays	5						
٠	Creatio	on of matrices,	operatio	ns on matrices.				CO1	
٠	Compl	ex numbers						CO1	
•	Array	Indexing						CO1	
•	Calling	g functions						CO1	
Unit 2	2D Plo	otting							
•	Plottin	Plotting of graphs of trigonometric functions, exponential functions,							
	and me	and modulus functions.							
•	Plotting of logarithmic functions, circles, concentric circles.							CO2	
•	Plottin	Plotting of parabola, ellipse, and hyperbola.						CO2	
•	Plottin	Plotting of cardioids, astroids, and circular helix.						CO2	
Unit 3	3D Plo	otting							
•	Plottin	g of sphere, ell	ipsoid.					CO3	

B.Sc./B.Sc. (Hons.)/B.Sc. (Hons.) with Research Mathematics

•	Plotting of hyperboloid of one sheet, hyperboloid of two sheets.	CO3
•	Plotting of circular paraboloid, circular cone, circular double cone	CO3
•	Surface plotting of $z = sinx + cosy$, $x + 2y + 3z = 0$,	CO3
	$z = xy, x^2 + y^2 + z^2 = k.$	
Unit 4	Multiple and parametric plots of 2D and 3D	
•	Plot of two functions and three functions in one graph.	CO4
●	Plot of multiple trigonometric functions.	CO4
•	Plot 2D functions using parametric form	CO4
٠	Plot 3D functions using parametric form	CO4
Text Books	 Valentine, D.T. and Hahn, B. D. Essential MATLAB for Engineers and Scientists. 8th edition, Academic Press, 2022. Bower, T. Introduction to Computational Engineering with MATLAB. CRC Press, Inc. 2022. 	
Reference Books	 Linge, S. & Petter, H., Programming for Computations - MATLAB/Octave: A Gentle Introduction to Numerical Simulations with MATLAB/Octave (Texts in Computational Science and Engineering Book 14) 1st ed. 2016 Edition). Gilat, A., MATLAB: An Introduction with Applications, 4th edition, Wiley. Rudra Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Oxford University Press, 2010 	

In	hou		
L	Τ	Р	Credit
4	0	0	4

Course	MAT1	AT111							
Code									
Course Title	Theory	of Equations							
Course	On the	completion of	the cours	se the student wil	l be ab	le to			
Outcomes	CO1:	Learn general p	oropertie	s of polynomials	and eq	uations,	nature of	of roots of	
	an equa	n equation and relation between roots and coefficients.							
	CO2:	O2: Solve the reciprocal equations. Transform the equation according to							
	various	arious given conditions and to.							
	CO3:	CO3: To solve cubic and biquadratic equations Find the sum of the power of the							
	roots o	f an equation u	sing Nev	vton's Method.					
	CO4:	Location and na	ture of r	oots by Sturm's 1	nethod.	Conditi	ion for a	n equation	
	to have	to have real roots. Obtain integral and real roots of an equation.							
Examination	Theory	Theory							
Mode									
Assessment		MSE MSP ESE							
Tools	Quiz	Assignment	ABL/	Lab					
			PBL	Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus							•	СО	
								Mappin	
								g	
Unit 1	Genera	al Properties o	f Polyno	omials and Equa	tions				
•	Genera	l properties of	f polyno	omials, Graphica	al repre	esentatio	n of a	CO1	
				nimum values of	f polyno	omials, (General		
	1 1	ties of equation							
•			-	gebra, Product	form o	f an al	gebraic	CO1	
	-	on, Repeated fac							
•				ve and negative r				CO1	
•	-		tion betw	ween the roots a	nd the	coeffici	ents of	CO1	
	equation								
Unit 2				ing Equations					
•	Symme	etric functions,	Applic	ations of symm	etric fu	inctions	of the	CO2	
	roots,								

•	Transformation of equations, Reciprocal equations, Binomial	CO2					
	equations						
•	Solutions of reciprocal equations	CO2					
•	Properties of the derived functions	CO2					
Unit 3	Algebraic Solutions and Powers of Roots						
•	Algebraic solutions of the cubic equations	CO3					
•	Algebraic solutions of biquadratic equations						
•	Powers of the roots, Newton's theorem on the sums of powers of roots						
•	Limits of the roots of equations.						
Unit 4	Nature of Roots of cubic and biquadratic Equation						
•	Separation of the roots of equations, Strums theorem, Applications of	CO4					
	Strum's theorem						
•	Conditions for real roots of an equation						
•	Newton's methods for approximate and integral solutions						
Text Books	• Burnside, W. S. and A. W. Panton. The Theory of Equations.						
	Dublin & London: Dublin University Press, 1954. Print						
	• Turnbull, H.W. Theory of equations. London & New York,						
	Interscience Publishers, Inc., 1947 Print						
Reference	Mac Duffee, C. C. Theory of Equations. John Wiley & Sons						
Books	Inc., 1954. Print						
	• B.S.Grewal, Higher Engineering Mathematics, Khanna						
	Publishers, 44 th Edition.						

In	hou		
L	Τ	Р	Credit
4	0	2	5

Course Code	MAT	MAT112							
Course Title	Ordin	Ordinary Differential Equations							
Course		On the completion of the course the student will be able to							
Outcomes	CO1: metho CO2: CO3: techni	 CO1: Understand basic concepts of differential equations and learn different methods to solve them. CO2: To find solution differential equations using various methods. CO3: Discuss the solution of second order differential equations using various techniques. CO4: Form the models of real-life applications using differential equation. 							
Examination	Theor	y + Practical							
Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/	Lab	_				
			PBL	Performanc					
				е					
Weightage	10	-	5	-	25	-	35	25	
Syllabus		L	1	I	I			CO Mapping	
Unit 1	Intro	duction and ge	eneral se	olutions of dif	ferential	equatio	ons		
•	degree Leibn	Classification and Formation of differential equations, Order and degree of ODE, Linear and reducible to linear differential equations, Leibnitz and Bernoulli Equations, variables separable and equations reducible to this form.						CO1	
•		ogeneous equat Exact different					geneous	CO1	
•		etrical interpretations.	etation	of first orde	r differe	ential ec	quation,	CO1	
•	Progra equati	ams to plot the on.	e solutio	on of family o	of first o	rder diff	erential	CO1	
Unit 2	Soluti	ion of differen	tial equ	ations using v	arious n	nethods			
•		ions solvable ble for y.	for <i>p</i> ,	equations sol	vable fo	or x, eq	uations	CO2	
•		ions in Clairau	t's form	and equation	s reducił	ole to Cl	airaut's	CO2	

•	Tac locus, Node locus, Cusp locus.	CO2
•	Programs to plot the solution of family of first order differential equation under boundary conditions.	CO2
Unit 3	Solution of second order differential equations using various techniques	
•	General solution of homogeneous equation of second order, principle of super position for homogeneous equation.	CO3
•	Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients and reducible to constant coefficients.	CO3
•	Euler's equation, method of undetermined coefficients, method of variation of parameters.	CO3
•	Programs to plot the solution of family of second and third order differential equation.	CO3
Unit 4	Applications of differential equations through modelling	
•	Introduction to compartmental model, exponential decay model, lake pollution model (case study of Lake Burley Griffin).	CO4
•	Drug assimilation into the blood (case of a single cold pill, case of a course of cold pills).	CO4
•	Exponential growth of population, limited growth of population, limited growth with harvesting.	CO4
•	Programs of Growth model (Exponential case only), Decay model (Exponential case only), Lake pollution model (with constant/seasonal flow and pollution concentration), Case of single cold pill and a course of cold pills.	CO4
Text Books	 Ross, S.L. Differential Equations, 3rd edition. India: John Wiley and Sons, 2007. Raisinghania, M.D. Ordinary and Partial Differential Equations. New Delhi: S. Chand and Company, 2024. Barnes, Belinda and Glenn R. Fulford. Mathematical Modeling with Case Studies: A Differential Equation Approach using Maple and MATLAB, 2nd Ed. London and New York: Taylor and Francis group, 2009. 	
Reference Books	 Codington, E.A. An Introduction to Ordinary Differential Equation. New York: Dover Publications, 1989. Rai, B. Choudhury D.P. and Freedman H.I. A Course in Ordinary Differential Equations. Alpha Science International Ltd. 2012. William E. Boyce, Richard C. DiPrima, Elementary Differential Equations, Wiley, 10th Edition, 2012. 	

In	hou		
L	Τ	Р	Credit
4	0	2	5

Course Code	MAT	201						
Course Title	Partia	Partial Differential Equations						
Course	On the	On the completion of the course the student will be able to						
Outcomes	CO1:	CO1: Observe basic concepts of partial differential equations related t						
	order	with its classific	cation as	linear and nonline	ear.			
				first and second	order pa	rtial diff	erential e	quations
	U	various techniq		• • •	•	. 1 1.00		
				sical phenomena	using pa	irtial diff	erential e	quations
			-	place equations.	tary solu	utions of	bounda	w value
	proble	-	rundame	intal and cicilien	lary son	itions of	UUUUUU	ly value
Examination	-	y + Practical						
Mode		-						
Assessment					MSE	MSP	ESE	ESP
Tools	Qui	Assignment	ABL/	Lab				
	z		PBL	Performance				
Weightage	10	-	5	-	25	-	35	25
Syllabus					-			CO
								Mappi
								ng
Unit 1	Intro	luction and ge	neral sol	utions of Partial	differen	tial equa	tions	
•			ons of sev	veral variables, Pa	artial Der	ivatives a	and their	CO1
	proper		Egyptic	Dasia ag		and dat		CO1
-		matical problem	_	ons– Basic con	ncepts	anu uei	muons,	CO1
•		1		on of first-Order	Equation	ons: Geo	metrical	CO1
		retation.			1			
•	-		of Charac	cteristics for obtain	ining Ge	neral Sol	ution of	CO1
	Quasi	Linear Equation	ns.					
•	Progra	ams to find Solu	tion of C	Cauchy problem fo	or first or	der PDE.		CO1
Unit 2			second	order partial dif	ferential	equation	ns using	
	variou	ıs techniques.						

•	Charpit method for finding complete integral of a non-linear PDE (four standard forms).	CO2
•	Homogeneous linear equations with constant coefficients.	CO2
•	Canonical Forms of First-order Linear Equations.	CO2
•	Programs to find and plot the characteristics for the first order PDE, integral surfaces of a given first order PDE with initial data	CO2
Unit 3	Derivation of Heat, Wave and Laplace equations	
•	Derivation of Heat equation, Wave equation, Derivation of Laplace equation.	CO3
•	Classification of second order linear equations as hyperbolic, parabolic or elliptic.	CO3
•	Reduction of second order Linear Equations to canonical forms.	CO3
•	Programs to find solution of one-dimensional heat equation.	CO3
Unit 4	Analyze the fundamental and elementary solutions of boundary value problems	
•	Method of separation of variables, Initial Boundary Value Problems,	CO4
●	Non-Homogeneous Wave Equation with boundary conditions.	CO4
•	Solving the vibrating string problem, solving the heat conduction problem.	CO4
•	Programs to evaluate solution of wave equation with associated conditions.	CO4
Text Books	 Raisinghania, M.D. Ordinary and Partial Differential Equations. New Delhi: S. Chand and Company, 2024. Ross S.L., Differential equations, 3rd Ed., John Wiley and Sons, India, 2007. Pratap, R. Getting Started with MATLAB, Oxford University Press, New Delhi, 2015. 	
Reference Books	 Tyn Myint-U and Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th edition, Springer, Indian reprint, 2006. Abell Martha L., and James P. Braselton, Differential Equations with Mathematica, 3rd edition. Elsevier Academic Press, 2007. Ian N. Sneddon, Elements of Partial differential Equations, Dover Publications, 2006. T. Amarnath, An Elementary course in Partial Differential Equations, 2nd Edition, Jones and Bartlett Publishers, 2010. 	

In	hou		
L	Τ	Р	Credit
4	0	2	5

Course	MAT202									
Code										
Course Title	Analy	Analytical Geometry								
Course	On the	e completion of	the course th	ne student will be	e able to					
Outcomes	CO1 :	Understand con	ncept of pair	of straight lines a	and circl	es.				
	CO2 :	Understand fur	ndamental co	ncepts and prope	rties of o	conics.				
	CO3 :	Understand fur	ndamental co	ncepts of sphere	and con	e.				
	CO4 :	Understand fur	ndamental co	ncepts of cylinde	ers and c	onicoids				
Examination	Theor	у								
Mode										
Assessment					MSE	MSP	ESE	ESP		
Tools	Quiz	Assignment	ABL/PBL	Lab]					
				Performance						
Weightage	10	10	5	-	25	-	50	-		
Syllabus								СО		
								Mappin o		
Unit 1	Pair o	of straight lines	s and Circle					g		
•	Chang	e of Axes- Tra	nslation and	rotation of axes,	general	transform	mation,	CO1		
	invaria				U					
•	Pair o	of Straight line	s- Homogen	eous equation o	f second	d degree	, angle	CO1		
	betwee	en pair of strai	ght lines, joi	nt equation of th	ne angle	bisector	s, joint			
	equati	on of lines join	ing origin to	the intersection of	of a line	and a cu	rve			
٠	Circle	: General equa	tion of circle	e, tangents and r	normal, j	pair of ta	angents	CO1		
			chord of conta	act, pole and pol	ar, equa	tion of c	hord in			
		of mid-point								
•	-		and orthogon	ality of two circ	les, radio	cal axis,	coaxial	CO1		
Unit 2		y of circles ola, Ellipse an	d Uymarhala							
Unit 2		· •	• •							
•			-	abola, tangent an		-		CO2		
	a point, chord of contact, pole and polar, equation of chord in terms of									
	midpo	oint, diameter								

•	Standard equations of ellipse, tangent and normal, tangents from a point,	CO2			
	chord of contact, pole and polar, equation of chord in terms of midpoint,				
	diameter				
•	Standard equations of hyperbola, tangent and normal, tangents from a point,	CO2			
	chord of contact, pole and polar, equation of chord in terms of midpoint,				
	diameter, conjugate diameters of ellipse and hyperbola				
•	The second degree equation $S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c =$	CO2			
	θ , reduction of the second degree equation into standard form, identification				
	of curves represented by $S = 0$ (including pair of lines)				
Unit 3	Sphere and Cone				
٠	Sphere- Equation of a sphere and its properties, the tangent plane, plane of	CO3			
	contact				
•	the polar plane, angle of intersection of two spheres	CO3			
•	Equation of a cone, enveloping cone of sphere, intersection of cone with a	CO3			
	line				
•	Right circular cone	CO3			
Unit 4	Cylinder and Conicoids				
•	equation of cylinder, enveloping cylinder	CO4			
•	Right circular cylinder	CO4			
•	Conicoids- General equation of the second degree in three variables	CO4			
•	equations of central conicoids (the ellipsoid, hyperboloid of one and two sheets)	CO4			
Text Books	• P.K. Jain and Khalil Ahmed: A text book of Analytical Geometry of				
	two dimensions, Wiley Eastern Ltd, 1994.				
	• P.K. Jain and Khalil Ahmed: A text book of Analytical Geometry of				
	three dimensions, Wiley Eastern Ltd, 1999.				
	• Shanti Narayan and P.K Mittal: Analytical Solid Geometry, 17th				
	Revised Edition, S. Chand and Co., New Delhi, 2006.				
Reference	• P. R. Vittal, Analytical Geometry: 2D and 3D Always learning, Dorling				
Books	Kindersley (India), 2013.				
	• S.L. Loney, The Elements of Coordinate Geometry, Edu Gorilla				
	Prep Experts.				
	<u>.</u>				

In	hou		
L	Т	Р	Credit
3	0	2	4

Course	PHS153	PHS153							
Code									
Course Title	Optics an	Optics and Lasers							
Course	On the co	In the completion of the course the student will be able to							
Outcomes	CO1: To	D1: To impart students' knowledge of interference and gain insights about the							
	Fraunhof	raunhofer diffraction in detail.							
	СО2: То	CO2: To understand the concept of polarization, and its applications in day to day life.							
	СОЗ: То	understand the	concept of	LASER, its wo	rking m	nechanis	sm and	various types	
	and								
	application	ons.							
	СО4: То	have hand on	training of	various optics e	xperim	ents.			
Examination	Theory+	Practical							
Mode									
Assessment				T	MS	MS	ES	ESP	
Tools	Quiz	Assignmen	ABL/P	Lab	Ε	Р	Ε		
		t	BL	Performanc					
***	10		_	e					
Weightage	10	-	5	-	25	-	35	25	
Syllabus								CO	
TT •4 1	T		4 •					Mapping	
Unit 1		ence and Diffr				4 E.		-	
				double slit exp ent sheet, Inter			esnel's		
	▲ ·	s rings and t	-			of thir			
				on at a single sl				1	
				slit, Diffractio				1	
				sive power, Ra		Criteri	on for		
	resolving	power, resolvi	ing power of	of a diffraction g	grating.				
Unit 2	Polarizat	tion							
-			ht waves. P	lane polarized li	ight – p	roducti	on and		
	analysis.	Circular an	nd elliptic	al polarization	n, Pol	arizatio	n by		
				arisers and ana					
				e refraction, Qu				2	
				rcularly polariz Half shade polar			uction		
	Optical a	cuvity, specific	- 10tati011. I	ian shade polar	meter.				

Unit 3	LASERsInteraction of light with matter; Einstein relations; light amplification population inversion; active medium, pumping; metastable states; principle pumping schemes; optical resonant cavityHe-Ne Laser, Ruby Laser, laser beam characteristics and applications, shape and width of spectral lines, line broadening mechanism, natural, collision and Doppler broadening.	3
Unit 4 Text Books	 Laboratory experiments To determine the wavelength of light using Newton's ring set up. To determine the wavelength of laser source using diffraction of single slit. To study the specific rotation of sugar solution Laurent's half shade polarimeter method Study of C.R.O. as display and measuring device, Study of Sinewave, square wave signals (half wave and full wave rectification) To compare the focal length of two lenses by Nodal slide method. Determination of Plank's constant using photoelectric effect. To measure beam divergence of He-Ne Laser. To determine the refractive index of the material of a given prism using Sodium light Subramanayam, N.; Lal, B. and Avadhamulu; M. N. Textbook 	4
Reference Books	 of Optics. New Delhi: S. Chand & Company, 2006. 2. B.Sc. Practical Physics, C. L. Arora. 1. Jenkins, F.A.; White, H.E. Fundamentals of Optics. USA: McGrawHill Publication. 2. Ghatak, A. Optics. New Delhi: Tata McGraw Hill Publication, 2008 	

In	hou		
L	Τ	Р	Credit
4	0	0	4

Course	MAT2	211							
Code									
Course Title	Group	Group Theory-I							
Course	On the	completion of	the cours	se the student wil	l be abl	le to			
Outcomes	C01:	To recognize th	e mathei	matical objects ca	alled gr	oups.			
	CO2:	CO2: To understand the concept of Cyclic Groups and to learn cyclic notation for							
	permu	tations and its ty	ypes.						
	CO3:	To explain the	significa	nce of the notion	s of cos	sets, nori	mal sub	groups, and	
		-	-	range's theorem a					
				ure preserving				and their	
		juences.		r	1		0 PS		
E		-							
Examination Mode	Theory	ý							
Assessment					MS	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/	Lab	Ε				
			PBL	Performance					
Weightage	10	10	5 -		25	-	50	-	
Syllabus								CO Mapping	
Unit 1	Introd	luction of Grou	ıps						
•	Symm	etries of a regul	ar n-gon	l				CO1	
•		-	L.	groups including	· 1			CO1	
				n groups (illustrat	tion thr	ough ma	trices)		
•		ntary properties						CO1	
•		oups and examp						CO1	
Unit 2	-	-		for permutation	S				
•		lizer, normalize		of a group				CO2	
•		et of two subgro		alaasifiastiss	·		arve1! .	CO2	
•	groups		groups,	classification of	subgr	oups of	cyclic	CO2	
•			mutation	ns, properties of p	ermuta	tions. ev	ven and	CO2	
	•	ermutations, alte					4114		
Unit 3		s and Factor G		-					
•	Proper	ties of cosets						CO3	

•	Lagrange's theorem and consequences including Fermat's Little theorem	CO3
•	Normal subgroups	CO3
•	Factor groups	CO3
Unit 4	Group Homomorphisms and Isomorphisms	
•	Group homomorphisms, Isomorphisms	CO4
•	Properties of homomorphisms, Properties of Isomorphisms	CO4
•	Cayley's theorem	CO4
•	First, Second and Third Isomorphism theorems.	CO4
Text Books	 J. A. Gallian, Contemporary Abstract Algebra, (4th ed.), Narosa, 2008 M. Artin, Algebra, (2nd ed.), Pearson, 2024. 	
Reference Books	 Bhattacharya, P.B., S.K. Jain, and S.R. Nagpal. Basic Abstract Algebra, (2nd Edition), Cambridge University Press, 2003 Herstein, I.N. Topics in Algebra, Wiley Eastern Limited, India, 1975. Print. Fraleigh J.B. A First Course in Abstract Algebra, 7th Ed. Pearson, 2002. Print. Surjeet Singh and Qazi Zameeruddin, Modern Algebra, 8th Edition, Vikas Publishing House, 2006. 	

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT2	12						
Code	1011112	12						
Course	Elemer	lementary Real Analysis						
Title	Liemen	itur y itour i inur	y 515					
Course	On the	completion of t	he course	the student will	be able	to		
Outcomes		1					propertie	es of real
		CO1 : Demonstrate competence with the algebraic and order properties of rean numbers.						
	CO2: I	Demonstrate con	mpetence	with open and cl	losed se	ts.		
			-	with elementary			quences.	
			-	with the converg			-	series.
Examination	Theory							
Mode								
Assessment		-	1	1	MSE	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/	Lab				
			PBL	Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus								CO
								Mappin g
Unit 1	The Re	eal Numbers						8
•	Review of Algebraic and Order Properties of R.						CO1	
•		0		Suprema and Inf	fima.			CO1
•				R, The Archimede		perty, De	ensity of	CO1
		al (and Irrationa			1		2	
•	Counta	ble sets, uncour	ntable sets	s and uncountabi	lity of R	l.		
•	Charac	terization of int	ervals, Ca	antor Nested Inte	rval The	eorem.		CO1
Unit 2	Sets in	R						
٠	Neighb	orhood of a po	oint. Prop	erties of Neighb	orhoods	s. Interio	or point.	CO2
	Open s							
•	-	-	-	it of a set. Def				CO2
	Illustra	tions of Bolzane	o-Weierst	trass theorem for	sets. Cl	osed set		
•	Propert	ties of open and	closed se	ets				CO2
•	Dense s	sets in R. Densi	ty of $\overline{\mathbf{Q}}$ and	nd R-Q in R.				CO2
TI	S across							
Unit 3	Sequer			o Conversat		The	t of c	<u> </u>
•	-		-	e, Convergent	sequenc	e, Lim	n of a	CO3
	sequen	ce. Limit Theor	ems.					

•	Monotone Sequences, Monotone Convergence Theorem.	CO3
٠	Subsequences, Divergence Criteria, Monotone Subsequence Theorem	CO3
	(statement only), Bolzano Weierstrass Theorem for Sequences.	
•	Cauchy sequence, Cauchy's Convergence Criterion.	CO3
Unit 4	Series	
•	Convergence and Divergence of infinite series, Cauchy criterion.	CO4
•	Tests for convergence: Comparison test, Limit Comparison test, Ratio	CO4
	Test, Cauchy's nth root test, Integral test.	
•	Alternating series, Leibnitz test.	CO4
•	Absolute and Conditional convergence.	CO4
Text Books	• Malik SC and Arora Savita. Mathematical Analysis, 5th Ed. Singapore: New Age International Publishers, 2017.	
Reference Books	 Bartle, R.G. and D.R. Sherbert. Introduction to Real Analysis, 4th Ed. Singapore: John Wiley and Sons (Asia) Pvt. Ltd., 2011. Rudin, W. Principles of Mathematical Analysis, 3rd Edition. New Delhi: McGraw-Hill Inc., 2023. Berberian, S.K. A First Course in Real Analysis. New York: Springer Verlag, 1994. Thomson, B.S., A.M. Bruckner and J.B. Bruckner. Elementary Real Analysis. Prentice Hall, 2nd edition 2008. Apostol, Tom M., Mathematical Analysis, 2nd Edition, Pearson Education, 2002. S. K. Mappa, Introduction to Real Analysis, 9th Edition, Levant Books, 2021. 	

In	hou	rs	
L	Τ	Р	Credit
4	0	2	5

Course	MAT2	213							
Code									
Course Title	Nume	rical Analysis							
Course	On the	e completion of	the course	e the student will	ll be able	e to			
Outcomes	CO1:	understand the	methods t	o solve algebrai	ic as wel	l as trans	scendent	tal equations	
	and do	the programm	ing related	l to these metho	ods.				
	CO2:	CO2: Learn relations between different operators and interpolation and do the							
	progra	programming related to these methods.							
	CO3:	CO3: Learn numerical integration and do the programming related to these methods.							
	CO4:	Learn solution	of ordinar	y differential eq	uation d	o the pro	grammi	ng related to	
	these r	these methods.							
Examination Mode	Theory	Theory+ Practical							
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/P	Lab					
			BL	Performanc					
				e					
Weightage	10	-	5	-	25	-	35	25	
Syllabus								CO Mapping	
Unit 1	Soluti	on of algebraid	e, transce	ndental equation	ons				
•	Bisect	ion Method, Fa	lse Positio	on Method and S	Secant N	lethods		CO1	
•				d deductions	from N	ewton-R	aphson	CO1	
		ıla, Graeffe's ro	=	-					
•				ation and Jaco				CO1	
			on method	, Jacobi's meth	od for e	igen valu	les and		
	U	vectors	ind the rea	al roots using B	inaction	Folco P	onition	CO1	
-		1 0		s Methods, Gau					
	Metho				100 DUIU	ui uiiu Jo			
Unit 2		olation							
•	_		relations b	between differer	nt operat	ors		CO2	
•	Newto	on forward & b	ackward,	Newton Divide	ed differ	ence, La	grange	CO2	
	interpo	olation							

•	Gauss forward and backward interpolations, Derivatives using Newton	CO2
-	backwards and forward interpolation.	002
•	Write a program to interpolate the given data using Newton's forward,	CO2
•		02
TT	backward and derivatives Using the same methods	
Unit 3	Numerical Integration	~ ~ ~ ~
•	Newton-Cotes' quadrature formula, Trapezoidal rule	CO3
•	Simpon's one-third rule, Simposn's three-eight rule	CO3
•	Boole's rule and Weddle's rule	CO3
•	Write a program to do numerical integration using Trapezoidal rule,	CO3
	Simpson's one-third rule and Simpson's three-eight rule	
Unit 4	Solution of Ordinary Differential Equations	
•	Picard's method and Taylor's series method	CO4
•	Euler's method and Modified Euler's method	CO4
•	R-K Method up to fourth order	CO4
•	Write a program to solve the differential equation using Euler's method	CO4
	and Modified Euler's method and R-K Method of fourth order.	
Text Books	• Grewal B. S., Numerical Methods in Engineering and Science,	
	Khanna Publishers, Tenth Edition, 2015.	
	• Shastry, S. S. Introductory Methods of Numerical Analysis. New	
	Delhi: PHI Learning Private Limited, 2012.	
Reference	• Jain, M.K., Iyenger, S. R. K. and R. K. Jain. Numerical Methods	
Books	for Scientific and Engineering Computation. Delhi: New Age	
	International Publishers, 2019.	
	• Gerald C. F., and P. O. Wheatley. Applied Numerical Analysis.	
	India: Pearson Education, 2008.	
	 Mathews, John H., and D. Fink Kurtis. Numerical Methods using 	
	MATLAB 4thEdition. New Delhi: PHI Learning Private	
	Limited, 2012.	
	Linincu, 2012.	

In	hou		
L	Τ	Р	Credit
3	0	2	4

Course	PHS152							
Code								
Course Title	Modern	Physics						
Course	On the completion of the course, the student will be able to							
Outcomes								
	CO1: Know the main aspects of the inadequacies of classical mechanics and und							d understand
	the histor	rical developm	ent of quan	tum mechanics	and the	ability	to discuss	and interpre
	experime	ents that reveal	the dual na	ture of matter				
	momentu normaliz	im and energy ation technique	operator, t es, skill de	concepts of qu the Schrodinger evelopment on p ential barrier, ste	equatio problem-	n, prob -solvin	ability der g e.g. one	nsity and the -dimensiona
		U	1 1	of the atomic n pactive decay lik	,	1	1	
	CO4: Co	orrelate betwee	n theory ar	nd experimental	results	of basi	c quantum	physics and
			•	nd experimental k's constant, ion			-	
Examination	apply kn	owledge to find	•	nd experimental k's constant, ion			-	
	apply kn		•	-			-	
Mode	apply kn	owledge to find	•	-			-	
Examination Mode Assessment Tools	apply kn	owledge to find	l out plancl	k's constant, ion Lab Performanc	ization j	potentia	al, e/m rati	o etc.
Mode Assessment Tools	apply known Theory+ Quiz	owledge to find Practical Assignment	ABL/P BL	k's constant, ion Lab Performanc e	MSE	MS P	e/m rati	ESP
Mode Assessment Tools Weightage	apply kn Theory+	owledge to find Practical	d out planch	k's constant, ion Lab Performanc	ization j	potentia MS	al, e/m rati	ESP 25
Mode Assessment Tools Weightage	apply known Theory+ Quiz	owledge to find Practical Assignment	ABL/P BL	k's constant, ion Lab Performanc e	MSE	MS P	e/m rati	ESP 25 CO
Mode Assessment Tools Weightage	apply known Theory+ Quiz	owledge to find Practical Assignment	ABL/P BL	k's constant, ion Lab Performanc e	MSE	MS P	e/m rati	ESP 25 CO Mapp
Mode Assessment Tools Weightage Syllabus	apply km Theory+ Quiz 10	owledge to find Practical Assignment -	ABL/P BL 5	k's constant, ion Lab Performanc e	MSE	MS P	e/m rati	ESP 25 CO
Mode Assessment Tools Weightage	apply km Theory+ Quiz 10 Wave Pa	owledge to find Practical Assignment - rticle Duality	ABL/P BL 5	k's constant, ion Lab Performanc e -	MSE 25	MS P -	ESE 35	ESP 25 CO Mapp ing
Mode Assessment Tools Weightage Syllabus	apply km Theory+ Quiz 10 Wave Pa Quantum diffractio Propertie	Assignment	ABL/P BL 5 t, X-rays a principle a de Brogl	Lab Performanc e - nd their diffracti and its applicati ie waves, Wave	MSE 25 ion, Cor	MS P -	ESE ESE 35 effect, part luction, W	ESP 25 CO Mapp ing ticle Vave 1
Mode Assessment Tools Weightage Syllabus	apply km Theory+ Quiz 10 Wave Pa Quantum diffractio Propertie equation	Assignment	ABL/P BL 5 t, X-rays a principle a de Brogl	Lab Performanc e - nd their diffracti and its applicati ie waves, Wave	MSE 25 ion, Cor	MS P -	ESE ESE 35 effect, part luction, W	ESP 25 CO Mapp ing ticle Vave 1

	Expectation values, Particle in a box, reflection and transmission by a barrier,	
	tunnel effect, harmonic oscillator.	
Unit 3	Atomic Nucleus and Radioactivity	
	Nuclear Properties: The neutron, stable nuclei, nuclear sizes and shapes, binding	
	energy, meson theory of nuclear forces, Nuclear Models: liquid drop model,	3
	shell model, Radioactivity: Radioactive decay, Half-life, radioactive dating,	
	radioactive series, alpha decay and its theory, beta decay, gamma decay,	
	radiation hazards and radiation units	
Unit 4	Modern Physics Laboratory experiments:	
	1. Determination of Planck's constant using photocell.	
	2. To find half-life period of a given radioactive substance using GM counter	
	3. To determine charge to mass ratio (e/m) of an electron by Millikan Oil	
	Drop Method.	
	 Study of excitations of a given atom by Franck Hertz set up. To find the ionization potential of mercury using gas filled diode 	
	 Study of C.R.O. as display and measuring device, Study of Sinewave, 	4
	square wave signals.	
	7. To find conductivity of given semiconductor crystal using four probe method.	
	 8. To determine the Hall coefficient and mobility of given semiconductors. 9. Study of Solar Cell characteristics 	
Text Books	1. Shaweta MOHAN and Kulwanr S. Thind , Elements of Modern Physics, Vishal Publications, 2021	
	2. B.Sc. Practical Physics eBook : CL Arora	
Reference	1. A. Beiser, Concepts of Modem Physics: McGraw Hill, 1987	
Books	2. Ghatak and Loknatham. Quantum Mechanics:(Springer), 2004.	
	3. K. Hyde, Basic ideas and Concepts in Nuclear Physics: (Institute of Physics), 2004	

In	hou		
L	Τ	Р	Credit
3	0	2	4

Course	MAT3	801							
Code									
Course	Theory	Theory of Real Functions							
Title		•							
Course	On the	On the completion of the course the student will be able to							
Outcomes	CO1:	Demonstrate co	mpeten	ce with the limits	s and con	ntinuity o	of real fu	inctions.	
	CO2:	Demonstrate co	mpeten	ce with differenti	iation of	real fun	ctions.		
	CO3:	Demonstrate co	mpeten	ce with mean val	ue theor	ems and	their ap	plications.	
	CO4:	Demonstrate co	mpeten	ce with Taylor's	theorem	and its a	applicati	ons.	
Examinatio	Theory	V							
n Mode		,							
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL	Lab	1				
	-		/PBL	Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus			1				1	СО	
TT 1 4									
Unit 1	Limit and Continuity of Functions								
•	Limit of a function (epsilon-delta approach), sequential criterion for						CO1		
•		divergence crit		its, Infinite limit	a and lin	nite et in	finity	CO1	
•				uential criterion				C01	
•			-				-	COI	
		interval.		tinuous functions	s, conti	liuous iu	neuons		
•			orom 1	partian of roots t	haaram	procomu	tion of	CO1	
•		als theorem.	eorem, io	ocation of roots t	neorem,	preserva		COI	
Unit 2		rm Continuity	and Dif	ferentiation					
•				niform continu	ity cri	iteria, u	iniform	CO2	
		uity theorem.			5	,			
•	Differe	entiability of	a funct	ion at a point	t and i	in an i	nterval,	CO2	
	Carath	eodory's theore	em.						
٠	Algebr	ra of differenti	able fur	ctions, Intermed	diate va	lue prop	erty of	CO2	
	derivat	tives, Darboux'	s theore	m.					
٠	Monot	tone functions,	Inverse	functions, Invers	se of Str	rictly Mo	onotone	CO2	
	Function	ons.							
Unit 3	Applic	cations of Deriv	vatives						
		s Theorem, Mea						1	

•	Applications of mean value theorem to inequalities and approximation of polynomials.	CO3				
•	Relative extrema, interior extremum theorem. First derivative test for extrema.					
•	Indeterminate forms, L'Hospital's Rules.	CO3				
Unit 4	Taylor's Theorem					
•	Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder.	CO4				
•	Relative Extrema, application of Taylor's theorem to convex functions.	CO4				
•	Taylor's theorem's application to inequalities.	CO4				
•	Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln ln (1 + x)$, $1/(ax + b)$ and $(1 + x)^n$.	CO4				
Text Books	 Malik SC and Arora Savita. Mathematical Analysis, 5th Ed. Singapore: New Age International Publishers, 2017. Bartle, R.G. and D.R. Sherbert. Introduction to Real Analysis, 4th Ed. Singapore: John Wiley and Sons (Asia) Pvt. Ltd., 2011. 					
Reference Books	 Rudin, W. Principles of Mathematical Analysis, 3rd Edition. New Delhi: McGraw-Hill Inc., 2023. Berberian, S.K. A First Course in Real Analysis. New York: Springer Verlag, 1994. Thomson, B.S., A.M. Bruckner and J.B. Bruckner. Elementary Real Analysis. Prentice Hall, 2nd edition 2008. Apostol, Tom M., Mathematical Analysis, 2nd Edition, Pearson Education, 2002. S. K. Mappa, Introduction to Real Analysis, 9th Edition, Levant Books, 2021. 					

In	hou		
L	Τ	Р	Credit
3	0	2	4

Course	MAT3	302							
Code									
Course Title	Group	Group theory II							
Course	On the	e completion of	the course the	ne student will be	able to				
Outcomes	CO1 :	CO1 : Understand Automorphism group in both finite and infinite cyclic groups and							
	charac	teristics subgro	oup						
	CO2 :	Understand di	rects produc	t of groups and	fundan	nental t	heorem	of finite	
		n groups							
				elated notion and					
	CO4 :	Understand the	fundamental	concepts of Sylc	w p-suł	ogroups	, Sylow	theorems	
Examinatio	Theory	У							
n Mode							1	-	
Assessment		r		1	MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/PBL	Lab Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus								CO Mappin g	
Unit 1	Auton	norphism Gro	ups						
٠	Auton	norphism, inner	r automorphis	sm, automorphisi	n group	S		CO1	
•	Autom	norphism group	os of finite an	d infinite cyclic	groups			CO1	
•	Applic	cations of facto	r groups to a	utomorphism gro	ups			CO1	
•	Charac	cteristic subgro	oups					CO1	
Unit 2	Direct	Direct products							
٠	Proper	rties of external	l direct produ	cts				CO2	
٠	the gro	the group of units modulo n as an external direct product						CO2	
•		al direct produc						CO2	
•	Funda	mental Theorem	m of finite ab	elian groups				CO2	
Unit 3	Group	o Action							
•	Group	actions, stabili	izers and orbi	its				CO3	
•	Permu	tation represen	tation associa	ated with a given	group a	action		CO3	
•		Acting on the						CO3	
Unit 4	Appli	cation of Sylov	w's Theorem						
•	Class	ass equation and consequences, conjugacy in Sn							

B.Sc./B.Sc. (Hons.)/B.Sc. (Hons.) with Research Mathematics

•	p-groups and related theorems	CO4				
•	Sylow's theorems and consequences					
•	Cauchy's theorem	CO4				
Text Books	 Bhattacharya, P.B., S.K. Jain, and S.R. Nagpal. Basic Abstract Algebra. UK: Cambridge University Press, 2006, Print. Dummit, David. S., and Richard M. Foote, Abstract Algebra, 3rd Edition. New Delhi: Wiley, 2011. 					
Reference Books	 Gallian, Joseph A. <i>Contemporary Abstract Algebra</i>. 4th Ed., Delhi: Herstein, I. N. Topics in Algebra, 2nd Edition. Vikas Publishing House, New Delhi: 2006. Singh, Surjeet, and Q. Zameeruddin, Modern Algebra, 8th Edition. New Delhi: Vikas Publishing House, 2006. Malik D. S., J. N. Mordeson and M. K. Sen. Fundamentals of Abstract Algebra, McGraw-Hill, New York: 1997. Luthar I. S. and I. B. S. Passi, Algebra Vol. 2, Narosa Publishing House, New Delhi: 1999. 					

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT303								
Code									
Course Title	Probabilit	Probability Theory							
Course	On the co	On the completion of the course the student will be able to							
Outcomes	CO1: Un	CO1: Understand types of data and their attributes, representation of data.							
		• •		-	-				
				al tendency and N		1			
	CO3: Un	derstand Proba	bility, Rando	m variables, Cor	relation	and Reg	ression.		
	CO4: Un	derstand Proba	bility Distrib	ution, t-test, Chi-	Square t	est, F-te	st.		
Examination	Theory								
Mode									
Assessment	Quiz	Assignment	ABL/PBL	Lab	MSE	MSP	ESE	ES	
Tools				Performance				Р	
Waightaga	10	10	5		25	-	50	-	
Weightage Syllabus	10	10	5	-	25	-			
Synabus							Mapping		
Unit 1	Data and	its Types					maph	<u>, 1118</u>	
•	Classifica	tion, tabulation	and graphic	al, representation	of data.		CO1		
•		Descriptive sta					CO1		
٠	Explorato	ry data analysi	S				CO1		
Unit 2	Measures	s of central ten	dency and N	Aeasures of Disp	persion				
•	Mean, Median, Mode, Geometric mean, Harmonic mean						CC)2	
•	Range, Q	uartile deviatio	n, Mean devi	ation, Standard d	leviation	•	CO2		
Unit 3	Probabili	Probability and Random Variables							
•	Theory of probability						CC)3	
•	Random variable and mathematical expectation					CO3			
•	Discrete and continuous probability distributions					CO3			
٠	•	eorem and its p					CC)3	
Unit 4	Correlati	on and regres	sion & Prob	ability Distribut	tions				
•		on and its prope					CC)4	
•	Regressio	n and its prope	rties				CC)4	
•	Binomial,	, Poisson and th	neir propertie	S			CC)4	
•	Normal d	istribution and	their properti	es			CC)4	

Text Books	 Anderson TW. An Introduction to Multivariate Statistical Analysis. John Wiley. 3rd edition, 2009. S.C. Gupta, Fundamentals of Statistics, Himalaya Publishing House, 2020. 	
Reference Books	 Goon AM, Gupta MK & Dasgupta B. Fundamentals of Statistics. Vol. I. 2013. Hoel PG. Introduction to Mathematical Statistics. John Wiley. 5th edition, 1984. Goon AM, Gupta MK & Dasgupta B. An Outline of Statistical Theory. Vol. I. 2016. 	

In hours				
L	Τ	Р	Credit	
4	0	0	4	

Course	MATE	311							
Code									
Course Title	Riema	nn Integration	and serie	s of functions					
Course	On the	e completion of	the cour	se the student wil	ll be able	e to			
Outcomes	CO1:	CO1: Demonstrate competence with the concept of Riemann Integration							
	CO2:	Demonstrate c	ompeten	ce with the prope	erties an	d applic	ations of	f Riemann	
	Integra	ation.							
	CO3:	Demonstrate c	ompetenc	e with the conce	pt of Un	iform Co	onvergei	nce.	
	CO4:	Demonstrate c	ompetenc	e with the conce	pt of Pov	wer Serie	es.		
Examination	Theory	У							
Mode					<u>.</u>	•			
Assessment				1	MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/ PBL	Lab Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus									
T T •4 4								Mapping	
Unit 1		Riemann integration						001	
•	-	Inequalities of upper and lower sums, Riemann conditions of Integrability.						CO1	
٠	Riema	Riemann sum and definition of Riemann integral through Riemann						CO1	
	sums,	equivalence of	two defin	nitions.					
٠	Riema	nn integrability	y of mono	otone and continu	ious fund	ctions.		CO1	
٠	The C	lass of Rieman	n integral	ole functions.				CO1	
Unit 2	Prope	rties and App	lications	of Riemann inte	egration				
٠	Proper	rties of the R	iemann i	ntegral, definition	on and	integrab	ility of	CO2	
	piecewise continuous and monotone functions.								
٠	Interm	nediate Value (heorem t	for Integrals, Fu	ndament	al theor	ems of	CO2	
	Calcul	us.							
•	Impro	oper Integrals:	General	Value and Cauch	hy value	, type-I.	type-II	CO2	
	and m	ixed integrals.							
Unit 3	Unifo	rm Convergen	ce						
•	Pointw	vise and Uni	form co	nvergence of s	equence	of fur	nctions.	CO3	
	Weier	strass M-Test.							
٠	Unifor	rm Convergen	ce and	Continuity, Unif	form co	nvergen	ce and	CO3	
	Integra	ation.							
•	Unifor	rm convergence	e and d	lifferentiation, A	Contir	nuous n	owhere	CO3	
	differe	entiable functio	n.						

•	Weierstrass Approximation Theorem.	CO3				
Unit 4	Power Series					
•	Power series, Radius of convergence, Cauchy Hadamard Theorem,	CO4				
•	Differentiation and Integration of Power Series, Abel's Theorem.	CO4				
•	Multiplication of Two Series, Exponential, Logarithmic and					
	Trigonometric functions.					
Text Books	• Ross, K.A. Elementary Analysis, The Theory of Calculus. Undergraduate Texts in Mathematics, Indian reprint: Springer (SIE), 2004. Print.					
Reference Books	 Bartle, R.G., and D.R. Sherbert. Introduction to Real Analysis. 3rd Ed., Singapore: John Wiley and Sons (Asia) Pvt. Ltd., 2002. Singapore. Denlinger, Charles G. Elements of Real Analysis.Massachusetts: Jones & Bartlett (Student Edition), 2011. Print. Malik, S. C. and Savita Arora. Mathematical Analysis, 3rd Edition. New Age International Publishers, 2008. 					

In	hou		
L	Τ	Р	Credit
4	0	0	4

Course Code	MAT3	MAT312							
Course Title	Multiv	Multivariate Calculus							
Course	On the	On the completion of the course the student will be able to							
Outcomes	applica CO2: multiv CO3:	 CO1: Understand basic concepts of limits, continuity, partial derivatives and applications of multivariate functions. CO2: Get in depth knowledge of techniques for evaluation of extreme value of multivariate functions CO3: Learn various applications of double and triple integrals. CO4: Understand basics of vector calculus and its applications in interdisciplinary fields. 							
Examination	Theory	у							
Mode					1	T	1		
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/P	Lab					
			BL	Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus			1			•		СО	
								Mapping	
Unit 1	Funct	ions of Several	l Variable	5					
•	Functi variab		variables, l	imit and continui	ty of fu	nctions	of two	CO1	
•	Partial	differentiation						CO1	
•	Differe	entiability and	Total diffe	rentiability				CO1	
•	Suffici	ient condition f	or differen	tiability				CO1	
Unit 2	Prope	rties of Deriva	tives						
•	Directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes and normal lines						CO2		
•	Extreme values and saddle points						CO2		
•	Extrem	na of functions	of two var	iables				CO2	
•	Metho	d of Lagrange	multipliers	, constrained opti	imizatio	n probl	ems	CO2	

Unit 3	Multiple Integral						
٠	Double integration over rectangular region, double integration over non-rectangular region						
٠	• Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions						
٠	• Volume by triple integrals, cylindrical and spherical co-ordinates						
٠	Change of variables in double integrals and triple integrals						
Unit 4	Applications of Multiple Integral						
٠	Line integrals, Applications of line integrals: Definition of vector field	CO4					
•	• Divergence and curl. Green's theorem, surface integrals						
٠	• Integrals over parametrically defined surfaces. Stoke's theorem						
٠	Divergence theorem	CO4					
Text Books	 Thomas, G.B. and R.L. Finney. Thomas' Calculus. 12th Ed., Delhi: Pearson Education, 2005. Strauss, M.J., G.L. Bradley, and K. J. Smith. Calculus. 3rd Ed., Delhi: Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2007. Anton, H., I. Bivens, and S. Davis. Calculus Multivariable. 10th Ed., Singapore: John Wiley and Sons (Asia) P. Ltd., 2015. 						
Reference Books	 Marsden, E., A.J. Tromba, and A. Weinstein. Basic Multivariable Calculus. Indian reprint: Springer (SIE), 2005. Stewart, James. Multivariable Calculus, Concepts and Contexts. 8th Ed., USA: Brooks /Cole, Thomson Learning, 2015. 						

In	hou	rs	
L	Т	Р	Credit
4	0	0	4

Course	MATE	MAT313								
Code										
Course Title	Ring 7	Ring Theory and Linear Algebra								
Course	On the	On the completion of the course the student will be able to								
Outcomes	CO1:	To describe th	e fundament	al concepts in ri	ng theo	ory such	n as ide	als, quotient		
	rings,	ings, integral domains, and fields.								
	CO2:	CO2: To learn structure preserving maps between rings and their properties.								
	CO3:	To demonstrate	e the concept	s of vector space	s, subsp	paces, b	ases, di	mension and		
	their p	properties with	examples.							
	CO4 :	To identify ma	atrices with li	inear transformat	tions an	d the c	hange o	of coordinate		
	matrix	and be able t	o find the de	omain, range, ke	ernel, ra	ink, and	l nullit	y of a linear		
	transfo	ormation.								
Examination	Theory	У								
Mode										
Assessment					MSE	MSP	ESE	ESP		
Tools	Quiz	Assignment	ABL/PBL	Lab						
				Performance						
Weightage	10	10	5	-	25	-	50	-		
Syllabus								CO		
								Mapping		
Unit 1		luction of Ring								
•		_		properties of ring		ings		CO1		
•				cteristic of a ring				CO1		
•		ideal generated	by a subset of	of a ring				CO1		
•	Factor	_						CO1		
Unit 2		Homomorphis								
•		nomomorphism						CO2		
•	proper	ties of ring hor	nomorphisms	8				CO2		
•		rphism theoren	ns I, II and II	[CO2		
•		of quotients						CO2		
Unit 3		r Spaces, Basis								
•	Vector spaces, subspaces, algebra of subspaces						CO3			
•	quotient spaces, linear combination of vectors						CO3			
•	linear span, linear independence, basis and dimension						CO3			
•	Dimension of subspaces						CO3			
Unit 4	Linea	r Transformat	tion							
•		r transformation						CO4		
•	rank a	nd nullity of a	inear transfo	rmation				CO4		

•	matrix representation of a linear transformation	CO4
•	algebra of linear transformations	CO4
Text Books	 Joseph A. Gallian, Contemporary Abstract Algebra, (9th Edition), Narosa Publishing House, 2019. Vivek Sahai and Vikas Bist, Linear Algebra, (2nd Edition), Narosa 2013. 	
Reference Books	 Bhattacharya, P.B., S.K.Jain, and S.R.Nagpal. Basic Abstract Algebra, 2nd edition. U.K: Cambridge University Press, 2004. Hoffman, Kenneth, and Ray Alden Kunze. Linear Algebra, 2nd edition. Prentice-Hall of India Pvt. Ltd., 1971. Fraleigh, John B. A First Course in Abstract Algebra, 8th edition. Pearson, 2022. Artin, M. Abstract Algebra, 2nd Ed., Pearson, 2011. Lang, S. Introduction to Linear Algebra, 2nd Ed., Springer, 2005. Strang, Gilbert. Linear Algebra and its Applications, Thomson, 2007. 	

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course	MATE	314							
Code									
Course Title	Mecha	anics							
Course	On the	e completion of	f the course	the st	udent will be	e able	to		
Outcomes	CO1 :	CO1: Understand the concepts of equilibrium in case of number of							of coplanat
	concur	rrent forces and	d basic notio	ons of	parallel forc	es.			
	CO2 :	Understand ba	sic concepts	s of M	Ioment and c	ouple	•		
	CO3 :	Understand the	e application	ns of I	Newton laws	of mo	otion an	d basic o	concepts of
	SHM								
		Understand th		ntal	concepts rela	ated to	o curvi	linear r	notion and
		ples of work ar	d energy.						
Examinatio	Theory	У							
n Mode						1 ~		<u> </u>	
Assessment		· · ·				MS E	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/PBI			Ľ			
	10	10		Pe	erformance			-	
Weightage	10	10	5	-		25	-	50	•
Syllabus									CO Mapping
Unit 1	Mome	Moment and Couple							
•	Comp	osition and Res	solution of f	orces	- parallelogra	m law	, resolv	ed part	CO1
	of a fo	orce,			1 0			•	
•	$\lambda - \mu$	theorem, Lami	's Theorem	, Para	llel forces.				CO1
٠	Mome	ents- definitior	n, sign con	venti	ons, geometr	rical 1	represei	ntation,	CO1
		Moments- definition, sign conventions, geometrical representation, Varginon Theorem, moment about a line							
•	Couple	es- definition,	moment of	a coi	ple, equilibr	ium o	f two c	ouples,	CO1
	resulta	ant of a force a	nd a couple						
Unit 2	Friction	0 n							
٠	Equili	brium of a rigi	d body acte	ed on	by three cop	lanar	forces,	m - n	CO2
	theore	m							
٠	Genera	al conditions of	of equilibriu	ım of	a body acte	d upo	on by co	oplanar	CO2
	forces								
•	Frictio	Friction- definition and nature of friction, types and laws of friction,						CO2	
	angle of friction								
•		cient of frictior	, and equili	briun	n of a particle	on a	rough i	nclined	CO2
	plane.								
Unit 3	Newto	on's laws of m	otion and t	heir a	applications				

Motion in a straight line with constant acceleration, Vertical motion	CO3
under gravity, velocity-time curve	
Relative motion, Motion under variable acceleration	CO3
Motion of two particles connected by a string passing over a smooth	CO3
pulley: two particles hanging freely, one particle being placed on a	
smooth table and the other hanging freely.	
Simple harmonic motion	CO3
Projectile motion and Curvilinear Motion	
Projectile motion in a vertical plane under gravity - equation of trajectory, range, time of flight, greatest height achieved and related problems; Projectile on an inclined plane	CO4
Work, Power and energy, principle of conservation of energy.	CO4
Angular velocity and angular acceleration, Centripetal and centrifugal	CO4
forces, Central force motion- areal velocity and angular momentum	
Curvilinear motion of particle- expressions of velocity and acceleration	CO4
in tangential and normal components	
 N. H. Dubey, Engineering Mechanics: Statics and Dynamics, Tata McGraw-Hill, 2013 M. Bay, A Text Book on Dynamics, S. Chand and Company, 1989 	
 Nelson E.W., Best C.L. and Mclean W.G., Schaum's outline of theory and problems of engineering mechanics-statics and dynamics, 5th edition, Mc Graw Hill Book Company, New Delhi, 1997. 	
	 under gravity, velocity-time curve Relative motion, Motion under variable acceleration Motion of two particles connected by a string passing over a smooth pulley: two particles hanging freely, one particle being placed on a smooth table and the other hanging freely. Simple harmonic motion Projectile motion and Curvilinear Motion Projectile motion in a vertical plane under gravity - equation of trajectory, range, time of flight, greatest height achieved and related problems; Projectile on an inclined plane Work, Power and energy, principle of conservation of energy. Angular velocity and angular acceleration, Centripetal and centrifugal forces, Central force motion- areal velocity and angular momentum Curvilinear motion of particle- expressions of velocity and acceleration in tangential and normal components N. H. Dubey, Engineering Mechanics: Statics and Dynamics, Tata McGraw-Hill, 2013 M.Ray, A Text Book on Dynamics, S. Chand and Company- 1989 S.L. Loney, The elements of statics and dynamics, 5th edition, Cambridge University Press, 1947. Nelson E.W., Best C.L. and Mclean W.G., Schaum's outline of theory and problems of engineering mechanics-statics and dynamics, 5th edition, Mc Graw Hill Book Company, New Delhi,

In	hou		
L	Т	Р	Credit
4	0	0	4

Course	MAT4	MAT401						
Code								
Course	Abstra	Abstract Algebra						
Title								
Course	On the	On the completion of the course the student will be able to						
Outcomes	CO1:	Learn the ap	plications	of Sylow Theo	orems ai	nd diffe	rent test	ts to check
	simpli	city of groups.						
	CO2:	Characterize al	l finite and	finitely generated	ed abelia	n group	s.	
	CO3:	Understand the	subnorma	al and normal seri	ies for th	ne solvat	le group	os.
	CO4:	Understand dif	ferent type	es of ideals and co	onnectio	n betwee	n ideal o	of a ring and
	matrix	ring over it.						
Examinati	Theory	y						
on Mode								
Assessment					MSE	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/P	Lab				
			BL	Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus							СО	
								Mapping
Unit 1	Sylow	Theorems and	d Simple (Groups				
•	Review	v of Sylow The	eorems					CO1
•	groups	s of order p^2 , pc	7					CO1
•	Applic	ations of Sylov	v Theorem	ns, Simple groups	s and exa	amples		CO1
•	Simpli	city of $A_n (n \ge n)$	5), Simpl	licity tests				CO1
Unit 2	Chara	cterization of	Finitely G	Generated Abelia	an Grou	ps		
•	Finite	Abelian Group	s.					CO2
•	Invaria	ants of Finite A	belian Gro	oups				CO2
•	Funda	mental Theorer	n on Finite	ely generated Abe	elian Gro	oups.		CO2
Unit 3	Subno	ormal, normal	and comp	osition series				
•	Norma	al and Subnorm	al Series.					CO3
•	Derived Series.						CO3	
٠	Compo	osition Series.						CO3
٠	Solvab	ole Groups and	Nilpotent	groups.				CO3
Unit 4	Conne	ect the fundam	ental con	cepts of rings, su	ibrings	and idea	als	
•	Algebr	ra of Ideals.						CO4
•	Maxin	nal and prime io	deals, Idea	ls in quotient ring	gs.			CO4
•	Field of	of Quotient of I	ntegral do	main.				CO4
	• Relation between one sided/two sided ideals of ring R and ring $M_n(R)$.						CO4	

Text Books	• Shahi V., and V. Bist, Algebra, 4 th Edition. Alpha Science	
	International Ltd, Delhi: 2018.	
	• Bhattacharya, P. B., S. K. Jain, and S. R. Nagpaul, Basic Abstract	
	Algebra, 2nd Edition. U.K.: Cambridge University Press, 2004.	
	• Dummit, David. S., and Richard M. Foote, Abstract Algebra, 3 rd	
	Edition. New Delhi: Wiley, 2011.	
Reference	• Herstein, I. N. Topics in Algebra, 2 nd Edition. Vikas Publishing	
Books	House, New Delhi: 2006.	
	• Singh, Surjeet, and Q. Zameeruddin, Modern Algebra, 8 th Edition.	
	New Delhi: Vikas Publishing House, 2006.	
	• Malik D. S., J. N. Mordeson and M. K. Sen. Fundamentals of	
	Abstract Algebra, McGraw-Hill, New York: 1997.	
	• Luthar I. S. and I. B. S. Passi, Algebra Vol. 2, Narosa Publishing	
	House, New Delhi: 1999.	

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT4	MAT402						
Code								
Course	Mather	matical Statistic	cs					
Title								
Course	On the	completion of	the course the	e student will be	able to			
Outcomes	CO1 : 1	Learn Probabili	ty distributio	ns.				
	CO2 : 1	Learn Sampling	g Theory and	Hypothesis testin	ng.			
	CO3 : 1	Learn Hypothes	sis Testing.					
	CO4 :]	Learn Large Sa	mple tests.					
Examinatio	Theory	/						
n Mode								
Assessment					MSE	MSP	ESE	ESP
Tools	Quiz Assign	Assignment	ABL/PBL	Lab				
				Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus								CO Mapping
Unit 1	Probability distributions for discrete and continuous							
•	Discrete probability distributions: Geometric and Negative Binomial distributions and their properties					C01		
•	Continuous probability distributions: Uniform, normal, beta distribution of first and second kind, gamma.				C01			
•	Uniform, normal, beta distribution of second kind.					C01		
•	Expone	ntial distributions	s and their prop	erties.				C01
Unit 2	Sampl	ing Theory an	d distributio	n				
•	Types	of Sampling- S	imple, Stratif	ied, Systematic				C02
•	Errors	in sampling, Para	ameter and Stat	istics.				C02
•	Exact distribu	Sampling D ution	istributions:	Chi-square di	stributic	on, Stud	dent's-t	C02
•	Snedeco	or's F- distributio	n, Fisher's – Z	distribution.				C02
Unit 3	Hypot	hesis Testing						†
•	Tests of	of significance		nples, Null and	Alternat	ive hypo	othesis,	C03
-		l region and lev			:1-a1:1	d not - t	4	<u> </u>
•	_			powerful tests, l			ests.	C03
•				ni square test of g	goodness	s of fit		C03
• •		of significance 2	L and F distri	DUIIONS				C03
Unit 4	-	sample tests	1: 0	. •1 .				
•	Large	Sample tests, S	ampling of at	tributes				C04

r		
•	Tests of significance for single proportion and for difference of proportions	C04
•	Sampling of variables	C04
•	Tests of significance for single mean and for difference of means and for difference of standard deviations	C04
Text Books	 Gupta, S. C., and V. K. Kapoor. Fundamentals of Mathematical Statistics. Sultan Chand & Sons: New Delhi, 2020. Hogg Robert V., Joeseph McKlean, and Allen T Craig. Introduction to Mathematical Statistics. London: Pearson Education Limited, 8th Edition 2019. 	
Reference	• J.S. Milton and J.C. Arnold, Introduction to Probability and Statistics,	
Books	Fourth Edition, McGraw Hill 2006.	
	• Lehmann, E. L., & Casella, G. Theory of point estimation (Vol. 31). Springer Science & Business Media, 1998.	
	 Mood, A.M., Graybill, F.A. and Boes, D.C. Introduction to the Theory 	
	of Statistics, 3rd Edition, McGraw-Hill series, New York, 1974.	

In	hou		
L	Τ	Р	Credit
4	0	0	4

Course	MAT40	MAT403						
Code								
Course	Metric	Spaces						
Title		1						
Course	On the	completion of	f the course	the student w	ill be a	ble to		
Outcomes	CO1: L	earn Basic se	t topology a	nd Sequences	and ser	ies and	their co	onvergence
				of Metric space			leteness	-
			-	ntinuity in metri	-			
				s, Uniform cor	ntinuity	and the	eorems	on various
F		ies of Metric	space.					
Examinati	Theory							
on Mode						MO	DO	ECD
Assessmen					MS	MS	ES	ESP
t Tools	Quiz	Assignme	ABL/PB	Lab	Ε	Р	Ε	
		nt	L	Performan				
***	10	10	_	ce	25		50	
Weightage	10	10	5	-	25	-	50	•
Syllabus								CO
								Mappin
TT	N/ - 4	C						g
Unit 1	Metric	-						001
•		ct sets, Perfec		· .				CO1
•		on and exam	_	_	•			CO1
•	-			Spaces and the	ar prop	erties		CO1
•		ces and their						CO1
Unit 2		gence and C	-					
•			Frontier a	nd Boundary	Point	ts and	their	CO2
	properties.							
•	-		-	l Complete Me	etric Sp	aces		CO2
•		intersection t						CO2
Unit 3		uity and Uni		-				
•		ity, Sequenti	al Continui	ty				CO3
•		n continuity						CO3
•	Compa							CO3
•	Heine E	Borel theorem	l					CO3

Unit 4	Compactness and Connectedness				
•	Sequential compactness	CO4			
•	Finite Intersection Property, totally bounded				
•	Bolzano-Weiertrass property				
•	Connectedness				
Text Books	 Jain, P. K. Jain and Khalil Ahmad. <i>Metric Spaces</i>, Alpha Science International, 2nd Revised Edition, 2004. R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis (3rd ed.), John Wiley and Sons, 2002. Kumaresan, S. <i>Topology of Metric Spaces</i>, Narosa Publication, 2nd ed., 2011. N. L. Carothers, Real Analysis, Cambridge University Press 2000. 				
Reference Books	 Copson, E.T. <i>Metric Spaces</i>, London: Cambridge University Press, 1988. Print. Rudin, W. Principles of Mathematical Analysis, McGraw-Hill Publishing Company; 3rd (Third) Edition (January 1, 1976). T. M. Apostol, Mathematical Analysis (2nd ed. Reprint), Narosa, 2002. 				

In	hou	Irs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT4	11						
Code								
Course Title	Advand	ced Linear Algo	ebra					
Course		-		e student will be a				
Outcomes	CO1: 1	Learn about line	ear transform	ations and its ass	ociation	with mat	trices.	
	CO2: 1	CO2: Learn about linear functionals and dual spaces.						
	CO3: 1	Learn about Ch	aracteristic V	alues and Charac	teristic V	/ectors.		
	CO4: I	Learn about Inr	er Product S	paces and their Pi	operties.			
Examinatio	Theory	7						
n Mode								
Assessment					MSE	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/PBL	Lab Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus								CO Mappi ng
Unit 1	Dual S	Dual Spaces						
•	Linear	Functionals						CO1
٠	Dual S	Dual Spaces					CO1	
٠	Dual B	Dual Bases					CO1	
•	Double	e Dual						CO1
Unit 2	Chara	cteristic Value	s and Vector	ſS				
٠	Charac	teristic Values	and Characte	ristic Vectors				CO2
•	Charac	teristic Spaces	and Similarit	у				CO2
•	Diagon	alizable						CO2
•	Minim	al Polynomials	and Equation	18				CO2
Unit 3	Canon	ical Forms						
•	Diagon	al forms, triang	gular forms					CO3
٠	Rationa	al and Jordan c	anonical Forr	ns.				CO3
•	Eigen s	spaces and simi	larity					CO3
Unit 4	Inner	Product Space						
•	Inner P	roduct Spaces,	Norms and I	Distances				CO4
٠	Orthonormal basis, The Gram-Schmidt Orthogonalization, Orthogonal complements					CO4		
•	-		ar operator or	n an inner produc	t space			CO4
•		•	-	, Unitary and Nor	-	erators		CO4
Text Books	• Hof			ar algebra, 2nd Ec			Prentice	

Reference	• Lipschutz, S., and M. Lipson. Linear Algebra, 3rd Edition. New Delhi:
Books	Tata McGraw Hill, 2017.
	• Axler, S. Linear Algebra Done Right, 2nd Edition. New York: Springer
	Verlag, 2004.
	• Lang, S. Undergraduate Texts in Mathematics, 3rd Edition. New York:
	Springer-Verlag, 2004.
	• Singh, S. Linear Algebra. New Delhi: Vikas Publishing, 2009.

In	hou		
L	Τ	Р	Credit
4	0	0	4

Course	MAT4	.05							
Code									
Course	Compl	Complex Analysis							
Title									
Course		On the completion of the course the student will be able to							
Outcomes	CO1:	Learn about fui	nctions of con	nplex variables	and their	r Analyti	city.		
	CO2:]	CO2: Learn about Complex Integration.							
	CO3:	Learn about zer	ros and singu	larities of comp	lex func	tions.			
	CO4:]	Learn to calcul	ate improper	integrals.					
Examinatio	Theory	ý							
n Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/PBL	Lab Performance					
Weightage	10	10	5	-	25	-	50	-	
Syllabus								СО	
								Mapping	
Unit 1	Functi	ions of Comple	ex Variables						
•	Complex plane, Riemann sphere,						CO1		
•	_			ontinuity and D	ifferentia	bility, A	nalytic	CO1	
		functions							
•	Conjug	Conjugate function, Harmonic function, Cauchy Riemann equations						CO1	
		sian and Polar f				1			
•	Constr Variab		ytic function	s. Elementary	Function	ns of Co	omplex	CO1	
Unit 2		lex Integration	.						
				heorem, Cauch	v's inter	ral form	ila and	CO2	
•	-	eralized form.	i, Caucity St		y s meg		aiu ullu		
•	<u> </u>		Morera's the	orem, Liouville	's theore	m		CO2	
•				Maximum mod				CO2	
•	-		-	urent's theoren		-		CO2	
Unit 3		and Singulari							
•	Singularities, Residues, Cauchy's Residue theorem, Residue at infinity					CO3			
•	Classification of Isolated singularity, Residues at Poles						CO3		
•		of Analytic fun		•				CO3	
•	Argument principle and Rouche's theorem.						CO3		
Unit 4		per Integrals a							
٠	Evalua			ordan's Lemma	a. An ind	entation	around	CO4	
•		te integrals invo	olving Sine a	nd Cosine.				CO4	

•	Elementary transformations, conformal transformation, Mobius	CO4				
	transformation, Stereographic projection					
•	Critical points, fixed points, Cross ratio problems.	CO4				
Text Books	• Ponnusamy, S. Foundation of Complex Analysis, 2nd Edition. New Delhi: Narosa Publishing House Pvt. Ltd, 2011.					
Reference	• Churchill, R. V. and J. W. Brown. Complex Variables and Applications.					
Books	New Delhi: Tata McGraw Hill International, 9th Edition, 2013.					
	 Copson, E. T. Theory of functions of complex variables. U.K.: Oxford University Press, 1970. Ahlfors, L. V. Complex Analysis 2nd Edition. New Delhi: McGraw Hill, 1966. Conway, J. B. Functions of one complex variable. New York: Springer Verlang, 1995. 					
	• Zill, D. G. and P. D. Shanahan. A First Course in Complex Analysis with Applications, 3rd Edition. Massachusetts: Jones and Bartlett Publishers, 2013.					

In	hou	Irs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT	404							
Code									
Course Title	Numb	ber Theory							
Course		e completion of	f the course th	ne student will	be able to				
Outcomes		Learn Division				d residue	e system		
		Learn Chinese	0	U			•		
		CO3: Learn Quadratic residues and Quadratic reciprocity law.							
	CO4:	Learn Diophar	ntine Linear E	Equations and C	Continued	fraction	s.		
Examinatio	Theor	y							
n Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Qui	Assignment	ABL/PBL	Lab					
	Z			Performance	:				
Weightage	10	10	5	-	25	-	50	-	
Syllabus								CO Mapping	
Unit 1	Divisi	ion Algorithm,	, Congruence	es and Reduce	d residue	system.		CO1	
•	Divisi	ibility of Intege	rs, Greatest c	ommon divisor	ſ			CO1	
•	Euclie	Euclidean algorithm. The Fundamental theorem of Arithmetic						CO1	
•	Cong	ruences and pro	blems based	on it				CO1	
•	Resid	ue classes and a	reduced resid	ue classes.				CO1	
Unit 2	Chine	ese Remainde	er theorem,	Euler's the	orem an	d Arit	hmetic	CO2	
	funct	ions							
•	Chine	ese remainder th	neorem and p	roblems based	on it			CO2	
•		at's little theore		theorem, Euler	's theorem	1.		CO2	
•		metic functions						CO2	
•	Arith	metic functions	$\tau(n), \mu(n)$					CO2	
Unit 3	•	ratic residues	÷	1 1	law			CO3	
•	~	ratic residues, I	<u> </u>	bol				CO3	
•		's criterion, Ga						CO3	
•	-	ratic reciprocity						CO3	
•		i symbol. Perfe						CO3	
Unit 4	-	nantine linear		-	Sum of tv	vo squai	res	CO4	
•	-	antine linear equa						CO4	
•	_	nantine non-line						CO4	
•	_	nantine non-line						CO4	
•	Repre	esentation of an	integer as a s	sum of two squa	ares			CO4	

Text Books	 Burton, D.M. Elementary Number Theory, 7th Edition. New Delhi: Tata McGraw-Hill 2017. Apostal, T.N. Introduction to Analytic Number Theory. Springer Verlag 1998. 	
Reference Books	 Niven, I., S. Zuckeman, and H. L. Montgomery. Introduction to Number Theory. Wiley Eastern 1991. Hardy, G.H. and E.M. Wright. An Introduction to the Theory of Number. U.K: Oxford Univ. 2008 	

In	hou	Irs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT4	412							
Code									
Course Title	Riema	Riemann Stieltjes Integration and Functions of Several Variables							
Course	On the	e completion of	the course the	e student will be a	able to				
Outcomes	CO1:	Review of Rier	nann Integrat	ion, Introduction	to Riema	nn Stiel	tjes Integ	gration.	
	CO2:	Understand Prope	erties of the Rie	mann-Stieltjes integ	ral and its	applicati	ons.		
		-							
	CO3:	Understand Un	iform converg	gence & Equicont	inuous f	amilies o	of function	ons.	
	CO4:	Understand Fur	nctions of sev	eral variables and	l its diffe	rentiatio	n.		
Examination	Theory	у							
Mode									
Assessment					MSE	MSP	ESE	ESP	
Tools	Quiz	Assignment	ABL/PBL	Lab					
				Performance					
Weightage	10	-	5	-	25	-	35	25	
Syllabus								CO	
								Мар	
								ping	
Unit 1		luction to Rien	•	s Integration					
٠		w of Riemann I						CO1	
٠		uction to Riema						CO1	
٠				n-Stieltjes integral				CO1	
Unit 2		rties of Riema		-					
٠	_	ation of vector-		ons				CO2	
٠	-	nces and series						CO2	
٠	Proble	em of interchang	ge of limit pro	ocesses for sequen	ces of fu	inctions		CO2	
•		rm convergence						CO2	
Unit 3	_	ences and series							
٠		rm convergence		=				CO3	
•		rm convergen	ce and int	egration, Unifo	rm con	vergenc	e and	CO3	
		entiation							
•	Equicontinuous families of functions						CO3		
•	Stone Weierstrass Theorem					CO3			
Unit 4		ions of several							
•		Transformation		ation				CO4	
•	The co	ontraction princ	iple					CO4	

B.Sc./B.Sc. (Hons.)/B.Sc. (Hons.) with Research Mathematics

•	The Inverse function theorem	CO4
•	The implicit function theorem	CO4
Text Books	 Rudin, W. <i>Principles of Mathematical Analysis, 3rd Edition</i>. New Delhi: McGraw-Hill Inc., 2017. Royden, H. L., and P. M. Fitzpatrick. <i>Real Analysis, 4th Edition</i>. New Delhi: Pearson, 2010. 	
Reference Books	 Apostol, Tom. <i>Mathematical Analysis –A modern approach to Advanced Calculus</i>. New Delhi: Narosa Publishing House, 2nd Edition1974. Bartle R. G. and Sherbert D. R., Introduction to Real Analysis, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002. 	

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course Code	MAT	413						
Course Title	Differ	Differential geometry						
Course	On the	On the completion of the course the student will be able to						
Outcomes	CO1 :	Understand dif	ferential	geometry of pla	ne curv	es and s	space cu	rves
	CO2 :	CO2: Understand the orientability of surfaces						
	CO3 :	Understand geo	ometrica	l interpretation o	f funda	mental	forms a	nd principal
	curvat	ure						
		e	odesic cu	rves and related	notions	3		
Examination	Theory	У						
Mode							- F	T
Assessment		1	r	1	MSE	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/ PBL	Lab Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus								CO Mapping
Unit 1	Plane	and Space Cu	rves					
•	Vector	rs in the Eucli	idean sp	ace, Review of	the ba	sics of	vector	CO1
			_	Parametrized				
		Reparameterization						
٠	Plane	Curves: curvatu	ire, oscu	lating circles, Fu	ndamer	ntal theo	orem of	CO1
	plane	curves						
•	Space	Curves: curvat	ure, tors	ion and the Frene	et frame	e,		CO1
٠	Funda	mental theorem	n of spac	e curves.				CO1
Unit 2	Surfa	ce in 3D						
•	Surfac	es in three dim	ensions:	Surface, Smooth	n Surfac	es.		CO2
•	Tange	nts, Normals a	nd Orien	tability.				CO2
•	Quadr	ic Surfaces						CO2
•	Triply	Orthogonal Sy	stems					CO2
Unit 3	Funda	amental Forms	8					
•				m: Lengths of				CO3
	Isome	tries of Surface	es. Conf	ormal mappings	of Sur	faces, S	Surface	
	Area.							
•			nental F	orm. The curva	ture of	Curve	s on a	CO3
	_	Surface						
•		ormal and Prin	<u> </u>					CO3
•		Geometrical interpretation of Principal Curvature.						CO3
Unit 4	Geode	esics and their	propert	ies				

•	Geodesics and their properties	
•	The Gaussian and Mean Curvatures, The Pseudosphere	CO4
•	Flat Surfaces. Surfaces of constant Mean Curvature.	CO4
•	Gaussian Curvature of compact Surfaces.	CO4
•	The Gauss Map. Geodesic Equations.	CO4
Text Books	 Pressley, Andrew. Elementary Differential Geometry. Springer, 2nd ed. 2010. Prakash, N. Differential Geometry: An Integrated Approach. US: McGraw-Hill Inc, 1982. 	
Reference Books	 Willmore, T. J. Introduction to Differential Geometry. Oxford University Press India, 2012. Weatherburn, C. E. Differential Geometry of Three Dimensions. Vol 1, Nabu Press, 2016. Berger, M. A Panoramic View of Riemannian geometry. Springer, 2007. R. S. Millman and G.D. Parker, Elements of Differential Geometry (Prentice-Hall, New Jersey, 1977). M. M. Lipschutz, Schaum's Outline of Differential Geometry (McGraw Hill, 1969). 	

In	hou	rs	
L	Т	Р	Credit
4	0	0	4

Course	MAT4	14						
Code								
Course	Mather	matical Methods	s					
Title								
Course	On the	completion of t	the course the	student will be a	able to			
Outcomes	CO1:	Understand Fun	ctional and its	s properties, Brad	chistoch	one prol	olem, G	eodesics.
				olems for functio		_		
	variabl	les, Approximat	e solutions of	Boundary Value	Probler	n- Rayle	igh-Ritz	z method.
	CO3:	Understand Lap	place Transfor	rms and its prop	erties ar	nd how t	o use i	t to solve
		ntial equations.		1 1				
		-	nd Fourier tra	nsforms and its a	pplicatio	on.		
Examination	Theory	/						
Mode								
Assessment					MSE	MSP	ESE	ESP
Tools	Quiz	Assignment	ABL/PBL	Lab				
				Performance				
Weightage	10	10	5	-	25	-	50	-
Syllabus								CO Mapping
Unit 1	Functi	ional and its pr	operties					
•	Calculus of Variations and its theorems and derivations.					CO1		
•	Brachistochrone Problem					CO1		
•	Surface	e revolution						CO1
•	Geodesics					CO1		
Unit 2	Variat	tional problems	5					
•	Variational problems involving several dependent variables					CO2		
•	Variational problems involving several independent variables					CO2		
•	One end point fixed and other is movable problem					CO2		
•	Rayleigh-ritz method.					CO2		
Unit 3	Laplace and inverse Laplace transforms							
•	Laplace transforms, Laplace transforms of derivatives and integrals					CO3		
•	Inverse Laplace transforms					CO3		
•		s delta function,	1					CO3
•	Convo	lution theorem a	and its problem	ms				CO3
Unit 4	Fourie	er Series and its	s application					
	Fourier Series, Even and odd functions					CO4		
•	roune	i Series, Even a	nu ouu runch	0115				001

•	Half range Sine and Cosine series	CO4
•	Complex form of a Fourier	CO4
Text Books	 Grewal B.S., Higher Engineering Mathematics, 43rd edition, Khanna Publishers, 2020. Jain and Iyenger, Higher Engineering Mathematics, 4th edition, Narosa Publication, 2014 	
Reference Books	 Elsgolts, L. Differential Equations and the Calculus of Variations. University Press of the Pacific, 2003 Galfand, I. M. and Fomin, S. V. Calculus of Variation. Dover Publications, 2000. 	

In	hou	rs	
L	Τ	Р	Credit
4	0	0	4

Course	MAT ²	415						
Code								
Course	Discre	ete Mathematics	5					
Title								
Course	On the	e completion of	the course the	student will be a	ble to			
Outcomes	CO1: Learn the fundamentals of logics, truth tables, quantifiers and o						counting	
	techni	ques.						
	CO2:	Learn Pigeonh	ole principle,	solution of recur	rrence r	elations	and g	enerating
	function	ons.						
		0 1	•	king theorem, Pla		-	lanar g	raph.
			Algebra, Logi	c Gates and Latti	ice theo	ry.		
Examinatio	Theor	У						
n Mode					LIGT	LICOD	DOD	TOP
Assessment	<u> </u>				MSE	MSP	ESE	ESP
Tools	Qui	Assignment	ABL/PBL	Lab				
XX 7. • • • • • • •	Z	10	-	Performance	25		50	
Weightage	10	10	5	-	25	-	50	- CO
Syllabus								Mapping
Unit 1	Funda	amental of lo	ogics, truth	tables, quantif	iers a	nd cou	inting	
	techni	iques.						
•	Funda	mentals of Log	ic: Basic conn	ectives and truth	tables.			C01
•	Logical equivalence, the laws of logic, rules of inference					C01		
•	The us	se of quantifiers	s, quantifiers, o	definitions and pr	oof of t	heorem	s.	C01
•	Basic counting techniques.					C01		
Unit 2	Pigeonhole principle, solution of recurrence relations and generating							
	functions.						<u> </u>	
•	The inclusion–exclusion principle, generalizations of the principle. The pigeonhole principle and generalized pigeon hole principle and its						C02	
•		<u> 1 1 </u>						C00
	-	•	ciple and gene	eralized pigeon h	ole prin	nciple a	nd its	C02
	proble	ems		eralized pigeon h	ole prin	nciple a	nd its	
•	proble Soluti	ems on of recurrence	e relations			nciple a	nd its	C02
• • Unit 3	proble Solution Solution	on of recurrence on of recurrence	e relations e relations usin	ng generating fun	ction.			
• Unit 3	proble Solution Solution Graph	on of recurrence on of recurrence on of recurrence h theory, Hand	e relations e relations usin Ishaking theo	ng generating fun rem, Planar and	ction.	lanar g	raph.	C02 C02
• • Unit 3	proble Solution Solution Graph Introd	on of recurrence on of recurrence h theory, Hand uction to Graph	e relations e relations usin Ishaking theo	ng generating fun	ction.	lanar g	raph.	C02
• Unit 3 •	proble Solution Solution Graph Introd of Gram	on of recurrence on of recurrence h theory, Hand uction to Graph uphs.	e relations e relations usin Ishaking theo n Theory: The	ng generating fun rem, Planar and Handshaking Th	ction.	lanar g	raph.	C02 C02 C03
•	proble Solution Solution Graph Introd of Gran Isomo	on of recurrence on of recurrence h theory, Hand uction to Graph	e relations e relations usin Ishaking theo n Theory: The hs. Homomor	ng generating fun rem, Planar and Handshaking Th	ction.	lanar g	raph.	C02 C02

Unit 4	Boolean Algebra, Logic Gates and Lattice theory.	
٠	Boolean algebra, Boolean Function, Switching circuit and Logic Gates	CO4
•	K-map and problems based on it	CO4
•	Lattices and Algebraic Structures	CO4
•	Lattice as algebraic structures, complete lattices	CO4
Text Books	 Joshi, K. D. Foundation of Discrete Mathematics. New Age International Private Limited, 2023. Malik, D. S., and M. K. Sen. Discrete Mathematical Structures Theory and Applications. New Delhi: Thomson Cengage Learning, 2004. 	
Reference Books	 Rosen, K. H. Discrete Mathematics and its Applications. Delhi: McGraw Hill, 8th edition, 2021. Trembley, J. P. and R. P. Manohar. Discrete Mathematical Structures with Applications to Computer Science. New Delhi: McGraw Hall, 1975. Liu, C. L. Elements of Discrete Mathematics. Delhi: McGraw Hill, 1986. Grimaldi, R. P. Discrete and Combinatorial Mathematics 5th Edition. New York: Pearson, 1999. 	