Scheme of Courses for Bachelor of Science (Biochemistry Hons.)

(Program ID – 2)

1st to 6th Semester Examinations 2014-2015 Session Onwards

Syllabi Applicable for Admissions in 2014
Scheme of Courses

Bachelor of Science (Biochemistry Hons.)

Semester 1

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BCH 101</td>
<td>Biomolecules</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>CHE 153</td>
<td>Organic Chemistry</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>BOT 101</td>
<td>Plant Diversity I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>ZOO 101</td>
<td>Animal Diversity I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>SGS 101</td>
<td>Human Values and Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>EVS 102</td>
<td>Environmental Education</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>BCH 102</td>
<td>Biomolecules Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>CHE 154</td>
<td>Organic Chemistry Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>BOT 102</td>
<td>Plant Diversity I Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>10.</td>
<td>ZOO 102</td>
<td>Animal Diversity I Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>21</td>
<td>3</td>
<td>11</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>700</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type Tests
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type Tests
E: Total Marks

L: Lectures
T: Tutorial
P: Practical
Cr: Credits
Semester 2

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BCH 103</td>
<td>Metabolism</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>EVS 103</td>
<td>Road Safety and Legal Awareness</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>ENG 151</td>
<td>Basic Communication Skills</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>4.</td>
<td>BTY 103</td>
<td>Principles of Genetics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>5.</td>
<td>BOT 103</td>
<td>Plant Diversity II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>SGS 102</td>
<td>General Knowledge and Current Affairs</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>MTH 170</td>
<td>Basic Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>SGS 104</td>
<td>Stenography</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>9.</td>
<td>SGS105</td>
<td>Stenography Lab.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>10.</td>
<td>BCH 104</td>
<td>Metabolism Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>11.</td>
<td>ENG 152</td>
<td>Basic Communication Skills Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>12.</td>
<td>BTY 104</td>
<td>Principles of Genetics Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>13.</td>
<td>BOT 104</td>
<td>Plant Diversity II Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>25</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type Tests
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type Tests
E: Total Marks

L: Lectures T: Tutorial P: Practical Cr: Credits
Semester 3

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ENG180</td>
<td>English</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>MIC101</td>
<td>Microbiology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>BCH201</td>
<td>Enzymology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>BTY101</td>
<td>Introductory Biotechnology and Bioanalytical Techniques</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>BCH 205</td>
<td>Biophysical Chemistry</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>MIC102</td>
<td>Microbiology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>BCH202</td>
<td>Enzymology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>BTY102</td>
<td>Introductory Biotechnology and Bioanalytical Techniques Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>BCH206</td>
<td>Biophysical Chemistry Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
<td>4</td>
<td>11</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>625</td>
</tr>
</tbody>
</table>

A: Continuous Assessment: Based on Objective Type Tests
B: Mid-Term Test-1: Based on Objective Type & Subjective Type Test
C: Mid-Term Test-2: Based on Objective Type & Subjective Type Test
D: End-Term Exam (Final): Based on Objective Type Tests
E: Total Marks

L: Lectures **T:** Tutorial **P:** Practical **Cr:** Credits
<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BTY 205</td>
<td>Molecular Biology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>CHE 155</td>
<td>Spectroscopy</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>BCH 203</td>
<td>Endocrinology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>4.</td>
<td>CSA 253</td>
<td>Basic Computer Applications</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>5.</td>
<td>ZOO 103</td>
<td>Animal Diversity II</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>CHE 156</td>
<td>Chemistry Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>BTY 208</td>
<td>Molecular Biology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>CSA 254</td>
<td>Basic Computer Applications Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>9.</td>
<td>BCH 204</td>
<td>Endocrinology Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>10.</td>
<td>ZOO 104</td>
<td>Animal Diversity II Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
<td>3</td>
<td>12</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>700</td>
</tr>
</tbody>
</table>

A: **Continuous Assessment:** Based on Objective Type Tests
B: **Mid-Term Test-1:** Based on Objective Type & Subjective Type Test
C: **Mid-Term Test-2:** Based on Objective Type & Subjective Type Test
D: **End-Term Exam (Final):** Based on Objective Type Tests
E: **Total Marks**
L: Lectures T: Tutorial P: Practical Cr: Credits
Semester 5

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIC 301</td>
<td>Basic Immunology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>CHE 353</td>
<td>Physical Chemistry</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>BTY 201</td>
<td>Cell Biology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>BCH 301</td>
<td>Nutritional, Clinical and Environmental Biochemistry</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>CHE 354</td>
<td>Physical Chemistry Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>MIC 302</td>
<td>Basic Immunology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>BTY 202</td>
<td>Cell Biology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>BCH 302</td>
<td>Nutritional, Clinical and Environmental Biochemistry Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

Total | 16 | 3 | 11 | 24 | | 600 |

A: **Continuous Assessment:** Based on Objective Type Tests
B: **Mid-Term Test-1:** Based on Objective Type & Subjective Type Test
C: **Mid-Term Test-2:** Based on Objective Type & Subjective Type Test
D: **End-Term Exam (Final):** Based on Objective Type Tests
E: **Total Marks**

L: Lectures T: Tutorial P: Practical Cr: Credits
Semester 6

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Paper Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BCH304</td>
<td>Molecular Physiology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>BYT 308</td>
<td>Genomics and Proteomics</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>BYT 204</td>
<td>Genetic Engineering</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>BYT 309</td>
<td>Biostatistics and Bioinformatics</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>BCH306</td>
<td>Membrane Biology</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>BCH 303</td>
<td>Seminar and Field Trip</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>BCH305</td>
<td>Molecular Physiology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>BYT 311</td>
<td>Genomics and Proteomics Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>9.</td>
<td>BYT 207</td>
<td>Genetic Engineering Lab.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>10.</td>
<td>BYT 312</td>
<td>Biostatistics and Bioinformatics Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>BCH307</td>
<td>Membrane Biology Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16</td>
<td>4</td>
<td>13</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>625</td>
</tr>
</tbody>
</table>

A: **Continuous Assessment:** Based on Objective Type Tests
B: **Mid-Term Test-1:** Based on Objective Type & Subjective Type Test
C: **Mid-Term Test-2:** Based on Objective Type & Subjective Type Test
D: **End-Term Exam (Final):** Based on Objective Type Tests
E: **Total Marks**

L: Lectures **T:** Tutorial **P:** Practical **Cr:** Credits
Course Title: Biomolecules
Course Code: BCH 101

Course Objectives: This course introduces students to the importance of biochemistry and covers various biomolecules, with a brief overview of their chemistry, their functions and their relevance to physiology and disease.

Unit A (15 hours)

Introduction to Biochemistry

Carbohydrates

Unit B (15 hours)

Proteins

Unit C (15 hours)

Nucleic Acids

Nature of genetic material. Evidence that DNA is the genetic material. Composition of DNA and RNA. Generalized structural plan and Nomenclature of nucleic acids. DNA double helix.

Porphyrins

Unit D (15 hours)

Lipids

Reference Books

Course Title: Biomolecules Laboratory
Course Code: BCH 102

Experiments:

1. Preparation of normal, molar and percent solutions.
2. Titration curve of Glycine.
4. Qualitative tests for Carbohydrates, Lipids, Amino acids, Proteins, Nucleic acids
5. Preparation of casein from milk and determination of its isoelectric point.
6. Titrimetric analysis of Vitamin C.
Course Title: Metabolism
Course Code: BCH 103

Course Objectives: The course is designed to survey the major metabolic pathways involved in energy generation and synthesis of biomolecules.

Unit A (15 hours)

Introduction to Metabolism

General features of metabolism, experimental approaches to study metabolism – intact organisms, bacterial mutants, tissue slices, and radioisotopes.

Carbohydrate Metabolism

Unit B (10 hours)

Electron Transport Chain and Oxidative Phosphorylation

Unit C (20 hours)

Lipid Metabolism

Amino Acid Metabolism

Unit D (15 hours)

Nucleotide Metabolism

Sources of atoms in the purine and pyrimidine nucleotides. Biosynthesis and degradation of purines and pyrimidines. Regulation of purine and pyrimidine biosynthesis.
Porphyrin Metabolism

Biosynthesis and degradation of porphyrins. Production of bile pigments.

Reference Books

Course Title: Metabolism Laboratory
Course Code: BCH 104

Experiments:

1. Estimation of blood glucose.
2. Estimation of cholesterol
3. Sugar Fermentation in Microorganisms.
4. Estimation of Glucose 6-P.
5. Assay of serum transaminases.
7. Estimation of Uric acid.
Course Title: Enzymology
Course Code: BCH 201

Course Objective: This course is an intermediate-level course intended for students majoring in biochemistry. It presents the important concepts of enzyme mechanism and catalysis with particular emphasis on enzyme kinetics and effects on enzyme inhibition. It also covers various applications of enzymes.

Unit A (10 hours)

Introduction

History, general characteristics, nomenclature, IUB enzyme classification (rationale, overview and specific examples), significance of numbering system. Definitions with examples of holoenzyme, apoenzyme, coenzymes, cofactors, activators, inhibitors, active site, metalloenzymes, units of enzyme activity, specific enzymes, isoenzymes, monomeric enzymes, oligomeric enzymes and multi-enzyme complexes. Enzyme specificity. Measurement and expression of enzyme activity – enzyme assays. Definition of IU, katal, enzyme turnover number and specific activity. Role of non-protein organic molecules and inorganic ions – coenzyme, prosthetic groups. Role of vitamins as coenzyme precursors (general treatment).

Unit B (20 hours)

Enzyme catalysis

Unit C (20 hours)

Enzyme Kinetics

Unit D (10 hours)
Industrial and clinical applications of enzymes

Immobilization of enzymes and their industrial applications. Production of glucose from starch, cellulose and dextran. Use of lactase in dairy industry. Production of glucose-fructose syrup from sucrose. Use of proteases in food, detergent and leather industry. Medical applications of enzymes. Use of glucose oxidase in enzyme electrodes.

Reference Books

Course Title: Enzymology Laboratory
Course Code: BCH 202

Experiments:

1. Assay of acid phosphatase activity, specific activity from germinating mung bean seeds.

2. Linearity curve of enzyme.

3. Effect of substrate concentration on acid phosphatase activity and determination of its K_m, V_{max} and K_i (with respect to inorganic phosphate).

4. Effect of pH and temperature on enzyme activity.

5. Purification of enzyme.
Course Title: Endocrinology
Course Code: BCH 203

Course Objective: This course introduces students to basic principles of endocrinology. It covers all the major classes of hormones released by various endocrine organs and their mechanism of action.

Unit A (15 hours)

Introduction

History, endocrine glands, hormones as chemical messengers, stimulus for hormone release: change in homeostasis, sensory stimulus and others.

Cell signalling & Mechanism of Hormone action

Receptor study, Binding affinity, specificity, Scatchard plot and purification. G protein linked receptor family; Signal transduction pathways involving G-proteins, Adenyl cyclases, Ca^{2+}, Phosphoinositides, PI-3 Kinase, DAG, cAMP, cGMP, NO, Protein kinases (A,B,C,G), Phosphoprotein phosphatases & Phosphodiesterases. Receptor tyrosine kinase family- EGF receptor family, Insulin receptor family, & Cytokine/erythropoietin receptor family associated with non receptor Tyrosine kinase (Signal transduction pathways involving: SH2 proteins, Ras, IRS-1, Raf, MEK, MAP kinase, JAK-STAT pathway).

Unit B (15 hours)

Intracellular Receptors

Steroid hormone receptors, Thyroid hormone receptors. Sensitisation & Desensitization of receptors; Short term regulation & Long term regulation. Drugs and Toxins affecting cell signaling: Cholera toxin, pertussis toxin, anthrax toxin, Bubonic Plague virulence, Forskolin, theophyllin, Phorbol esters, Sildenafil (Viagra).

Hormones

Structures, Receptor type, Regulation of biosynthesis and release (including feed back mechanism). Physiological and Biochemical actions, & Pathophysiology (hyper & hypo secretion).

Unit C (15 hours)

Endocrine disorders
Gigantism, Acromegaly, dwarfs, pigmies; Pathophysiology: Diabetes insipidus. Thyroid Hormone (include biosynthesis) Goiter, Graves disease, Cretinism, Myxedema, Hashimoto’s disease.

Hormones regulating Ca$^{2+}$ Homeostasis

Unit D

Hormones of Adrenal Cortex

Reproductive Hormones

Other organs with endocrine function: Heart (ANP), Kidney (erythropoietin), Liver (Angiotensinogen, IGF-1), Adipose tissue (Leptin, adiponectin). Pathophysiology : Obesity. Growth factors: PDGF, EGF, IGF-I,II , & NGF.

Reference Books:

Course Title: Endocrinology Laboratory
Course Code: BCH 204

Experiments:

1. Lipid profile- TAG, Lipoproteins, Cholesterol
2. Glucose tolerance test
3. Vitamin D assay
4. Assay of estrogen
5. T3/T4 assay by ELISA
Objectives: Introduce the student to basic concepts of acid and bases and its importance in biological systems, colloidal systems and it applications, measuring concentrations of solutions, understanding the principle of different types of reactions and basics of thermodynamics as applied to biological system.

Unit A (7 hours)
Dissociation of water, ionic product of water, concepts of pH, pOH, simple numerical problems of pH, determination of pH using indicators, pH meter and theoretical calculations. Dissociation of weak acids and electrolytes, Bronsted theory of acids and bases, shapes of titration curve of strong and weak acids and bases. Meaning of K_a and pK_a values, Buffers: buffer action, buffers in biological system, Henderson-Hasselbach equation with derivation, simple numerical problems involving application of this equation.

Unit B (8 hours)
Meaning of true solution, colloidal solution, and coarse suspension, distinction between lyophilic and lyophobic sols, Fundamental study of Donnan equilibrium- application in biological system, Methods of preparation of colloidal solution, membrane permeability, separation of colloidal solutions, elementary study of charge on colloids, Tyndall effect, application of colloidal chemistry, emulsion and emulsifying agents.

Unit C (8 hours)
Meaning of normality, molarity, molality, percentage solution, mole fractions, simple numerical problems from the above, Fundamental principles of diffusion and osmosis, definition of osmotic pressure, isotonic, hypotonic and hypertonic solutions, Biological importance of osmosis, Relationship of osmotic pressure to gas laws, General equation for dilute solutions, influence of ionization and molecular size on osmotic pressure.

Unit D (7 hours)
Classification of isomerism, oxidation reduction reactions, substitution, addition, elimination, condensation and decarboxylation with examples for each, Intra and Intermolecular interactions in biological system: Hydrogen bond, Covalent bond, hydrophobic interaction, disulphide bond, Peptide bonds, glycosidic bond, Phosphodiester linkage, Watson- Crick base pairings, Van der Walls force.

Introduction to chemical kinetics, equilibrium reactions, law of mass action, equilibrium constant, definition of catalysis, Basic principles of thermodynamics: free energy, enthalpy, entropy, reversible and irreversible reactions- as applied to biological systems.

Reference Books

Course Title: Biophysical Chemistry Laboratory
Course Code: BCH 206

Experiments:

2. Standardization of pH meter.

6. Experiments with colloidal gels: Dialysis (Diffusion through membranes), Diffusion through gels, Mutual Precipitation of Colloids, Precipitation of Colloids by salts, Adsorption by Charcoal

7. Experiments on Donnan Equilibrium: Demonstration of Donnan equilibrium using a membrane, Demonstration of Donnan equilibrium without using a membrane
Course Title: Nutritional, Clinical and Environmental Biochemistry
Course Code: BCH 301

Course Objectives: The course teaches basic principles of nutrition, along with clinical aspects of nutrition. The course also surveys biochemistry of environment and biochemical bases of various types of pollution.

Unit A (15 hours)

Nutrition and Dietary habits

Introduction and definition of food and nutrition. Factors determining food acceptance, physiological, energy, body building (growth and development). Regulation of body temperature. Physiology and nutrition of carbohydrates, fats, proteins and water. Vitamin A, D, E, K, vitamin B complex and vitamin C and minerals like Ca, Fe and iodine and their biological functions. Basic food groups: energy giving foods, body building food protective foods. Composition of balanced diet, recommended dietary allowances (RDA) for average Indian, Locally available foods, inexpensive quality foods and food stuffs rich in more than one nutrients. Balanced vegetarian and non-vegetarian diets, emphasis on nutritional adequacy.

Unit B (15 hours)

Nutritive and calorific value of foods

a. Basic concepts of energy expenditure, units of energy, measurement of energy expenditure by direct and indirect calorimetry, calculation of non-protein RQ with respect to carbohydrate and lipids. Determination of heat production of the diet. The basal metabolism and methods of measuring basal metabolic rate (BMR); energy requirements during growth, pregnancy, lactation and various physical activities. Calculation of energy expenditure of average man and woman.

Unit C (15 hours)

Basic concepts of clinical Biochemistry Definition and scope of clinical biochemistry in diagnosis, a brief review of units and abbreviations used in expressing concentrations and standard solutions. Quality control. Manual vs automation in clinical laboratory.
Collection and preservation of biological fluids (blood serum, plasma, urine and CSF). Chemical analysis of blood, urine and CSF. Normal values for important constituents (in SI units) in blood (plasma/serum), CSF and urine, clearance test for urea.

Clinical Enzymology

a. Definition of functional and non functional plasma enzymes. Isoenzymes and diagnostic tests. Enzyme pattern in health and diseases with special mention of plasma lipase, amylase, cholinesterase, alkaline and acid phosphatases, SGOT, SGPT, LDH and CPK.

b. Functional tests of kidney, liver and gastric fluids.

iii) Diseases related to metabolism

Hypo- and hyper-glycemia, glycogen storage diseases; lipid mal-absorption, and atorrrhea, phingolipidosis; role of lipoproteins. Inborn errors of amino acid metabolism- alkaptonuria, phenylketonuria, albinism, gout and hyper-uricemia.

Unit D (15 hours)

Environmental Biochemistry

Air Pollution

Particulate matter, compounds of carbon, sulphur, nitrogen and their interactions, methods for their estimation, their effects on atmosphere.

Water Pollution

Types of water bodies and their general characteristics, major pollutants in domestic, agricultural and industrial wastes, methods of their estimation, effects of pollutants on plants and animals, treatment of domestic and industrial wastes, solid-wastes and their treatment.

Reference Books:

Course Title: Nutritional, Clinical and Environmental Biochemistry Laboratory
Course Code: BCH 302

Experiments:

1. Estimation of calcium and phosphorus in serum and urine
2. Estimation of creatinine in serum and urine.
3. Estimation of bilirubin in serum
4. Estimation of haemoglobin
5. Serum enzyme analysis, amylase, GOT, GPT, acid and alkaline phosphatase
Course Title: Molecular Physiology
Course Code: BCH 304

Unit A (15 hours)

The body fluid compartments: Intracellular, extracellular and interstitial fluid. Plasma as an extracellular fluid; plasma composition; Blood cellular components; RBC; Hemostasis and molecular mechanism of Blood coagulation; Role of Vitamin K in coagulation; Anti coagulant and fibrinolytic systems. Anemias, Polycythemia, Haemophilia and Thrombosis.

The cardiovascular system: Anatomy of heart; Physiology of the cardiac muscle; automacity of the cardiac muscle; Excitation contraction coupling; relationship between cardiac cycle, heart sound ventricular volumes and the ECG; Control of cardiac function and output. Physics of blood pressure, flow and resistance; the arterial system; the venous system; the microcirculation and mechanics of capillary fluid exchange; Control of blood flow to the tissues; Portal circulations. Arterial pressure and its regulation Hypertension, Congestive heart disease, atherosclerosis and Myocardial infarction.

Unit B (15 hours)

Renal physiology: Anatomy of the kidney and the nephron; Regulation of renal blood flow; Cell biology of the Bowmans capsule; physiology of glomerular filtration; GFR; Tubular processing of the glomerular filtrate; Renal clearance; Assessment of kidney function. Regulation of urine volume and pH. Regulation of ECF electrolyte and water content, blood volume and long term blood pressure. Micturition reflex and voluntary control of micturition. Glomerular nephritis, renal failure, definition and use of dialysis and diuretics.

Respiration: Organization of the pulmonary system; Mechanism of respiration; Pulmonary ventilation and related volumes; Pulmonary circulation. Principles of Gas exchange and transport; Regulation of respiration; Pulmonary edema and regulation of pleural fluid. Blood buffer systems, renal and pulmonary control of blood pH; Acidosis and Alkalosis. Hypoxia, hypercapnea, pulmonary distress, emphysema.

Unit C (15 hours)

Gastrointestinal and hepatic physiology: Histology of the gastrointestinal tract; Propulsion and motility of food and digested material; Enteric reflexes; Secretory functions of the gastrointestinal tract; Digestion and absorption of macro and micronutrients. Peptic ulcer, Sprue, celiac disease, regurgitation, diarrhoea and constipation. Anatomy of the hepatic lobule; blood flow into the liver; Formation and secretion of bile; enterohepatic cycle; reticuloendothelial system; Metabolic importance of liver; Liver function tests. Jaundice and Liver cirrhosis.

Musculosketetal system: Bone structure and formation. Physiology of muscle contraction in striated and nonstriated muscle.

Unit D (15 hours)
Reproductive physiology: Sex determination; development of female and male genital tracts; Spermatogenesis; capacitation of sperm; testis blood barrier; Physiology of female reproductive of placenta; the feto placental unit.

Neurophysiology: Organization of the central nervous system; cells of the nervous system and anatomy and physiology of Blood Brain Barrier. Introduction to neural networks: central, autonomic and peripheral; the sensory and motor tracts; mechanism and importance of myelination. Sensory perception of Pain, temperature, touch and vision; Physiology of reflex action; The motor cortex; corticospinal tracts. Basic physiology and biochemistry of Learning and Memory

Reference Books

Course Title: Molecular Physiology Laboratory
Course Code: BCH 305

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Experiments:

1. Separation of isoenzymes of LDH by electrophoresis

2. Liver function test

3. Creatine kinase for muscular function

4. Kidney function test

5. Estimation of Iron, Hb, Met Hb and Tranferrin Binding Protein

7. Clotting time.
Course Title: Membrane Biology
Course Code: BCH 306

Unit A (15 hours)

Introduction: A historical perspective of different models of membranes, their characteristics with experimental basis of the model (Langmuir trough experiment, freeze fracture technique, X-ray diffraction).

Unit B (15 hours)

Unit C (15 hours)

Unit D (15 hours)

Membrane transport: Study of different transport systems; their structure, thermodynamics (free energy change involved, electro chemical potential, membrane potential, Nerst equation), kinetics regulators, Inhibitors / blockers biochemical function and significance. Simple diffusion, Facilitated diffusion: Passive transport (Glucose transporter, anion transporter); Active transport (P type ATPases V type ATPases, F type ATPases, Na+ / H+ symport systems). ABC family of transporters (MDR ATPase family, CFTR). Transport processes driven by light (Bacteriorhodopsin, Halorhodopsin). Group translocation. Specialized membrane Pores: Porins in Gram –ve bacterial membranes (E. coli OmpF, OmpC, LamB), Pore forming toxins (colicins, α hemolysin, anthrax toxin protective...
antigen) and Aquaporins. Ion channels: Voltage gated ion channels (Na+/K+ voltage gated ion channel), Ligand gated ion channels (Acetyl choline/IP3/cGMP gated ion channel), Leaky channels. Role of ion channels in nerve transmission & action potential propagation. Neurotransmitters: Acetyl choline, glutamate, & glycine (Metabolism, & signaling with type of receptors). Ionophores: Carriers and channel forming (valinomycin, gramicidin).

Reference Books

Course Title: Membrane Biology Laboratory
Course Code: BCH 307

Experiments:

1. RBC ghost cell preparation and separation of proteins by SDS PAGE

2. CMC of detergent and phospholipids.

3. Intestinal mobility of Histidine

4. Effect of detergents and other membrane active substances on Erythrocytes.
Course Title: Microbiology
Course Code: MIC101

Course Objective: This course is to learn basic microbiology, microbial growth and control methods of microbes.

Unit-A
Microbiology: definition, history and development of Microbiology. Biogenesis versus abiogenesis. 5 hours
Composition of microbial world and its applications. Distinguishing features of major groups of microorganisms: bacteria, fungi, algae, protozoa, viruses. 5 hours
Microscopy and observation of microbes: Light microscopy: bright field microscope, dark field microscope, phase contrast microscope, fluorescence microscope. Electron microscopy: The transmission electron microscope, Scanning electron microscope. 5 hours

Unit-B
Characteristics of microorganisms: Prokaryotic cell structure and function, size, shape, capsule and slime layer, spore, cell wall, cell membrane, outer membrane, ribosome, motility organelle, fimbriae and nuclear region. 6 hours
Cultivation of microorganisms: nutrition, cultivation methods and environmental factors affecting microbial growth. 5 hours
Bacterial growth curve. Maintenance of cells in exponential phase, synchronous growth, continuous culture, fed batch culture and measurement of growth. 4 hours
Cell division, genes in cell division 3 hours

Unit-C
Microbial metabolism: Metabolic pathways of carbohydrate metabolism common (Embden Meyerhof pathway, pentose phosphate pathway, Entner- Doudoroff pathway, pyruvate decarboxylation, TCA cycle) 6 hours
Unique to heterotrophic and phototrophic microorganisms (Ketoadipate pathway), Electron transport chain, Calvin cycle, patterns of energy yielding metabolism in microorganisms (respiration and fermentation) 8 hours

Unit-D
Control of microorganisms: control of microorganisms by physical and chemical agents, patterns of microbial death, factors affecting effectiveness of antimicrobial agents activity. 8 hours
Antimicrobial chemotherapy: Development of chemotherapy, general characteristics of antimicrobial drugs, and mechanisms of action of antimicrobial agents. Origin of drug resistance and its transmission in microorganisms. 8 hours 60 hours

Reference books

Course Title: Microbiology Lab
Course Code: MIC102

1. Preparation of media
2. Preparation of buffer
3. Culture transfer and pure culture by streaking method
4. Storage of pure culture – slant culture, glycerol stock
5. Bright Field microscopy
6. Phase contrast microscopy
7. Bacterial motility
8. Negative staining
9. Smear preparation and simple staining
10. Gram staining

45 hours
Course Title: Basic Immunology
Course Code: MIC301

Course Objective: This course is to learn basic immunology and clinical microbiology. Antibodies and pathogenic bacteria are covered by this course.

Unit A
History of immunology, Innate immunity, Adaptive immunity.
Hematopoiesis, Cells of immune system, Organs of immune system
Immunogenicity versus antigenicity, Epitopes, Pattern recognition receptors

Unit B
Antibodies: Structure, Effector functions, Antibody classes and biologic activities,
Generation of antibody diversity, class switching.
The B cell receptor, Monoclonal antibodies
Antigen antibody reaction, Cross reactivity, Precipitation reaction, Agglutination reaction,
Radioimmunoassay, Enzyme linked immunosorbent assay, Western blotting,
Immunoprecipitation, Immunofluorescence, Flow cytometry, Immunelectron microscopy.

Unit C
Major Histocompatibility complex. Antigen processing and presentation: Role of antigen presenting cells, two processing and presentation pathways.
Cytokines, Cytokines receptor, Cytokine related disease, Therapeutic uses of cytokines.
The function of complement, Complement activation, Biological consequences of complement activation, Complement deficiencies
Vaccines, Active and passive immunization, Designing vaccine for active immunization,
Whole organism vaccine, Purified macromolecules as vaccine, Recombinant vaccine.

Unit D
Hypersensitivity and types of hypersensitivity.
Autoimmunity and tolerance and their mechanism.

Reference books
4. Paul, William E., Williams, Lippincott and Wilkins, Fundamental Immunology. 6th
Course Title: Basic Immunology Lab
Course Code: MIC302

1. Blood grouping
2. Differential leukocyte counting.
3. Agglutination reaction
4. Immuno-electrophoresis
5. Enzyme linked immunosorbent assay

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

45 hours
Course Title: Animal Diversity I
Course Code: ZOO101

Course Objective: To acquaint students with the general characters and classification of invertebrate phyla and the affinities between different groups. To impart knowledge regarding the morphological, anatomical and physiological make up of a few representative organisms from each phylum.

UNIT-A 15 hours
- Description of animal diversity. Principles of classification-salient features and classification upto orders in non-chordates. Structural organization in different classes of non-chordates.
- Protozoa: locomotion, osmoregulation, nutrition and reproduction in Protozoa. Detailed Study of Euglena, Amoeba, Paramecium, Plasmodium

UNIT-B 18 hours
- Origin of Metazoa-metamerism and symmetry.
- Porifera: skeleton and canal system. Detailed study of Sycon
- Platyhelminthes: reproduction, variation in life cycles, parasitic adaptations and evolution of parasitism in Helminthes. Detailed study of Planaria, Fasciola, Taenia
- Nematoda: pseudocoelom, parasitic adaptations. Detailed study of Ascaris

UNIT-C 15 hours
- Annelida: coelom, metamerism, excretion. Detailed study of Nereis, Pheretima, Hirudinaria
- Arthropoda: vision, respiration and larval forms. Social life in insects. Detailed study of Palaemon, Periplaneta

UNIT-D 12 hours
- Mollusca: torsion and detorsion, shell and respiration. Detailed study of Pila, Unio, Sepia
- Echinodermata: water vascular system and larval forms. Detailed study of Asterias

Reference books

Course Title: Animal Diversity I Lab
Course Code: ZOO102

General survey of invertebrate phyla through slides/specimens/charts/models/e-resources:

- **Protozoa:** *Amoeba, Euglena, Paramecium* and *Vorticella, Balantidium, Nyctotherus, Opalina*, Radiolarians and Foraminiferans.
- **Porifera:** *Sycon, Grania, Spongilla, Euplectella, Hyalonema, Chalina, Euspongia*, Temporary mounts of gemmules and spicules of *Sycon*.
- **Coelenterata:** *Hydra, Obelia, Porpita, Velella, Physalia, Aurelia, Metridium, Alcyonium, Tubipora, Zooanthus, Madrepora, Favia, Fungia, Gorgoni, Pennatula, Sertularia, Plumularia, Pennaria, Bougainvillea*, statocyst of *Aurelia*.
- **Platyhelminthes:** *Planaria, Fasciola* (W.M. & T.S.), larval stages of *Fasciola*, *Taenia* (scolex, proglottids-mature and gravid), *Ascaris* (male and female).
- **Annelida:** *Pheretima*, T.S. of typhlosolar region, setae, pharyngeal nephridia, septal nephridium and integumentary nephridium of *Pheretima, Eutyphoeus, Lumbricus, Nereis*, parapodium of *Nereis, Heteronereis, Polynoe, Aphrodite, Amphitrite, Chaetopterus, Anodonta, Mytilus, Pholas, Pecten, Haliotis, Aplysia, Doris, Limax, Pila, Sepia, Octopus, Nautilus, Chiton and Anodonta, Arenicola, Hirudinaria, Pontobdella*.
- **Arthropoda:** *Peripatus, Lepisma*, cockroach, trachea and mouth parts of cockroach, grasshopper, praying mantis, earwig, dragonfly, termite (queen and other castes), ant, butterfly, moth, beetle, wasp, honeybee, crab, prawn, *Lepas, Balanus, Apus, Limulus*, scorpion, spider, millipede and centipede, *Cypris, Cyclops, Daphnia*, Prawn, Gill and statocyst of Prawn.
- **Mollusca:** *Anodonta, Mytilus, Pholas, Pecten, Haliotis, Aplysia, Doris, Limax, Pila, Glocichidium larva and radula of Pila, Sepia, Octopus, Nautilus, Chiton and Anodonta*.

Demonstration of anatomy of the following animals through charts/e-resources/dissection of animal

- **Earthworm:** digestive, reproductive and nervous systems
- **Cockroach:** digestive, nervous and reproductive systems, mouth parts of cockroach
- **Prawn:** digestive and nervous systems. Appendages and gills of prawn.
- **Anodonta:** digestive and nervous systems,
- **Pila:** digestive and nervous systems, radula of *Pila*
 Asterias: Aristotle’s lantern, tube feet.

Note: Practicals related to Animal Diversity I Lab are in accordance with UGC guidelines and have been approved by Dissection Monitoring Committee.
Course Title: Animal Diversity II
Course Code: ZOO103

Course Objective: To acquaint students with the general characters and classification of chordates and the affinities between different groups. To impart knowledge regarding the morphological, anatomical and physiological make up of a few representative organisms from each phylum.

UNIT-A 15 hours
- Origin and general characters of chordates with detailed classification of each animal group with special emphasis on salient features and interrelationships
- Hemichordata: Hemichordates as link between non-chordates and chordates with detailed study of Balanoglossus
- Cephalochordata: development, affinities. Detailed study of Branchiostoma.

UNIT-B 15 hours
- Cyclostomata: migration. Detailed study of Petromyzon
- Pisces: scales, fins, migration, parental care. Detailed study of Scoliodon, and Labeo

UNIT-C 12 hours
- Amphibia: Respiration, Parental care. Detailed study of Rana
- Reptilia: Terrestrial adaptations, parental care. Detailed study of Uromastix

UNIT-D 18 hours
- Aves: Respiration, Flight, Endothermy. Detailed study of Columba
- Mammals: Integument, Dentition. Detailed study of Oryctogalus

Reference books

Course Title: Animal Diversity II Lab
Course Code: ZOO104

General survey of chordates through slides/specimens/charts/models/e-resources:

- **Hemichordata**: *Balanoglossus*
- **Protochordata** - *Herdmania*, pharynx and spicules of *Herdmania*, *Molgula*, *Ciona*, *Ascidia*, *Botryllus*, *Pyrosoma*, *Salpa*, *Doliolum*, *Oikopleura* and *Branchiostoma*, T.S. *Branchiostoma* through different regions
- **Cyclostomata** – *Myxine*, *Petromyzon* and *Ammocoetes* larva. Chondrichthyens - *Zygaena*, *Pristi*, *Narcine*, *Trygon* and *Rhinobatos*.
- **Dipneusti** (Dipnoi) – Any of the lungfishes.
- **Amphibia** – *Necturus*, *Proteus*, *Amphiuma*, *Salamandra*, *Ambystoma*, *Triton*, *Hyla*, *Rhacophorus*, *Ichthyophis* and *Axolotl* larva.
- **Aves**: *Anas*, *Ardea*, *Milvus*, *Pavo*, *Tyto*, *Alcedo*, *Eudynamis*, *Casuarius*; and *Struthio*.

Demonstration of anatomy of the following animals through charts/e-resources/dissection of animal

- **Herdmania**: General Anatomy, pharynx and spicules
- **Labeo**: Digestive and reproductive systems, skeleton
- **Rana**: Digestive, arterial, venous and reproductive systems. Skeleton
- **Varanus**: Digestive, arterial, venous and reproductive systems. Skeleton
- **Hen**: Digestive, arterial, venous and reproductive systems. Skeleton
- **Rat**: Digestive, arterial, venous, urinogenital systems, skeleton

Note: Practicals related to Animal Diversity II Lab are in accordance with UGC guidelines ad have been approved by Dissection Monitoring Committee.
Course Title: Basic Communication Skills
Course Code: ENG151
No. Of Lectures: 60

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>75</td>
</tr>
</tbody>
</table>

Course Objective:

- To enhance students’ vocabulary and comprehensive skills through prescribed texts.
- To hone students’ writing skills.

Learning Outcomes: Students will be able to improve their writing skills as well as will enrich their word power.

NOTE:

- The question paper for end-semester examination will have a weightage of 25%. It will consist of 100 objective questions of equal marks. All questions will be compulsory.

- Two preannounced tests will be conducted having a weightage of 25% each. Each preannounced test will consist of 20 objective type, 5 short questions/problems on the UGC-NET (objective type) pattern as well as one long answer type question. Students are expected to provide reasoning/solution/working for the answer. They will attempt all questions. Choice will be given only in long answer type. The question paper is expected to contain problems to the extent of 40% of total marks.

- Four objective/MCQ type surprise tests will be taken. Two best out of four objective/MCQ type surprise tests will be considered towards final, each of 12.5% weightage to the final. Each surprise test will include 20-25 questions.

- The books indicated as text-book(s) are suggestive. However, any other book may be followed.

Unit – A Applied Grammar (Socio-Cultural Context)

Parts of Speech: Noun, Pronoun, Adjective, Verb, Adverb, Preposition, Conjunction, Interjection	5 hours
Tenses (Rules and Usages in Socio-cultural contexts)	6 hour
Modals: Can, Could, May, Might, Will, Would, Shall, Should, Must, Ought to	5 hours
Passives	5 hours
Reported/Reporting Speech	5 hour

Unit – B Reading (Communicative Approach to be Followed)

J M Synge: Riders to the Sea (One Act Play)	7 hours
Anton Chekhov: Joy (Short Story)	5 hours
Swami Vivekanand: The Secret of Work (Prose)	7 hours

Unit – C Writing
• Paragraph and Essay Writing 5 Hours
• Letter Writing: Formal and Informal 5 hours
• Notice and Email 5 hours

References:

a. Books

b. Websites
1. www.youtube.com (to download videos for panel discussions). Web.
Course Title: Basic Communication Skills Lab
Course Code: ENG152
No. Of Lectures: 30

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Course Objective:
- To improve fluency in speaking English.
- To promote interactive skills through Group Discussions and role plays.

Learning Outcome: Students will get exposure to speaking through the above mentioned interactive exercises. In addition, they will develop a technical understanding of language learning software, which will further improve their communicative skills.

Unit – A Speaking/Listening

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie-Clippings</td>
<td>10 hours</td>
</tr>
<tr>
<td>Role Plays</td>
<td>10 hours</td>
</tr>
<tr>
<td>Group Discussions</td>
<td>10 hours</td>
</tr>
</tbody>
</table>

Instructions:

1. Each student will prepare a scrap file on any of the topics given by class teacher. Student should be able to justify the contents of his/her Scrap file, which carries the weightage of 10 marks. Marks will be given for originality, creativity and presentation of thoughts.
2. In the end of semester, viva exam will be conducted. Viva will be for 10 marks. Spoken English will be the focus of exam. Examiner will ask questions related to scrap file and other general (non-technical) topics.
3. In the End-term exam, lab activity will carry the weightage of 10 marks.
4. Acknowledge all the sources of information in your scrap file.

References:

Books

Websites
1. www.youtube.com (to download videos for panel discussions). Web.
Course Title: ENGLISH
Course Code: ENG180
Total Lectures: 60

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objective: To familiarize students of non-literary programmes with some of the basics of literary studies through a critical study of the prescribed texts

Learning Outcomes:

<table>
<thead>
<tr>
<th>Unit – A Never Never Nest by Cedric Mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consumerist Lifestyle</td>
</tr>
<tr>
<td>• Bank Loans and Modern Times</td>
</tr>
<tr>
<td>• Character Analysis</td>
</tr>
<tr>
<td>• Stylistic Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – B Guide by R. K. Narayana</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Interpersonal Relationships</td>
</tr>
<tr>
<td>• Religious Beliefs/Rituals in Rural India</td>
</tr>
<tr>
<td>• Character Analysis</td>
</tr>
<tr>
<td>• Stylistic Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – C Twelfth Night by Shakespeare</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Salient Features of Shakespearean Comedy</td>
</tr>
<tr>
<td>• Character Analysis</td>
</tr>
<tr>
<td>• Stylistic and Thematic Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – D Animal Farm by George Orwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Marxist Principles</td>
</tr>
<tr>
<td>• As a Progressive Text</td>
</tr>
<tr>
<td>• Symbolic Analysis</td>
</tr>
</tbody>
</table>

Suggested Reading:

Course Title: Human Values and Ethics
Course Code: SGS101

Course Objectives
- To sensitize students about the role and importance of human values and ethics in personal, social and professional life.
- To encourage students to read and realize the values of enlightened human beings.
- To enable students to understand and appreciate ethical concerns relevant to modern lives.

Learning Outcomes:
Students becoming responsible citizens and better professionals who practise Values and Ethics in every sphere of life.

Unit - A

Human Values
1. Concept of Human Values: Meaning, Types and Importance of Values. 2 hours
2. Human Values: Lessons from the lives and teachings of great thinkers. 3 hours
3. Value Education: The content of value education 2 hour
4. Value crisis and its redressal. 1 hour
5.

Unit - B

Being Good and Responsible
1. Self Exploration and Self Evaluation 2 hour
2. Acquiring Core Values for Self Development 2 hour
3. Living in Harmony with Self, Family, Society and Nature 3 hours
4. Values enshrined in the Constitution: Liberty, Equality Fraternity and Fundamental Duties. 3 hours

Unit - C

Value – based living
1. Vedic values of life 2 hour
2. Karma Yoga and Jnana Yoga 2 hours
3. Ashta Marga and Tri-Ratna 2 hours
4. Truth, Contentment and Wisdom 2 hours

Unit - D

Ethical Living
1. Personal Ethics 2 hours
2. Professional Ethics 3 hours
3. Ethics in Governance 2 hours
4. Ethics in Education 2 hours

Total = 35 hours

Suggested Readings:
30. Saraswati Dayanand, *The Light of Truth (The Satyartha Prakashan)*. New Delhi:
31. Krishnamurti J. *The First and Last Freedom*
Course Title: General Knowledge and Current Affairs
Course Code: SGS102

Course Objectives

The study of General Knowledge and Current Affairs has become even more important today. It is not only a major constituent of most competitive examinations but also aids in acquiring general awareness.

The objectives of this course are:

• To introduce students with the course and contents of various competitive examinations
• To prepare a foundation for appearing in various competitive examinations
• To sensitize the students about the current issues and events of national and international importance
• To provide opportunity to the students to study inter disciplinary subjects like Geography, Science, Economy, Polity, History, International Relations etc.

Learning Outcomes:

• Students would get an opportunity to aspire, plan and prepare for various competitive examinations in advance.
• It would polish their personalities and sharpen the skills of debates, group discussions, communication, interview etc.
• Students would acquire general awareness of National and International Events.

Unit — A

General Geography
World Geography:
we live in, Countries rich in Minerals, Wonders of the World, Biggest and Smallest.

Indian Geography:
Location, Area and Dimensions, Physical Presence, 2 hour
Indian States and Union Territories,
Important sites and Monuments, Largest-Longest and Highest in India.

General History
Glimpses of India History, Ancient Indian, Medieval India, Modern India, 3 hours
Various Phases of Indian National Movement, Prominent Personalities.

Glimpses of World History
Important Events of World History, Revolutions and Wars of Independence, 2 hours
Political Philosophies like Nazism, Fascism, Communism, Capitalism, Liberalism etc.

Unit — B

General Polity
World Politics – Major Actors and their political relations, 3 hours
UNO and other organizations viz: WTO, EU, SAARC, ASEAN, BRICS, WTO, OIC, OAU, OPEC, GCC etc.

Indian Polity: Constitution of India: 3 hours

General Economy: 3 hours

Unit — C

General Science: 3 hours
General appreciation and understandings of science including the matters of everyday observation and experience. Inventions and Discoveries.

Sports and Recreation: 3 hours

Current Affairs: 3 hours

India and Neighbours: 2 hours
Current phase relations with China, Pakistan, Bangladesh, Nepal, Sri Lanka and Afghanistan

Unit — D

Miscellaneous Information
Who is who 2 hours
Books and Authors, Persons in News, Awards and Honours, Abbreviations and Sports

Reference Books:
1. Aggarwal, R. S. Advance Objective General Knowledge, S. Chand Publisher (2013)

Current Affairs
Magazines
Economic and Political Weekly, Yojna, the Week, India Today, Frontline, Spectrum.
Competition Success Review, Competition Master, Civil Services Chronicle, Current Affairs, World Atlas Book
Newspapers the Hindu, Times of India, the Hindustan Times, the Tribune
Course Title: Stenography
Course Code: SGS104

Course Objective: The course is to inculcate writing and listening skills among the students. This would act as building blocks for the learner to begin the study of stenography. As the learners are from the senior secondary background the course has been created keeping in mind their requirements for the future.

Learning Outcome:
After going through this course the participant would have understood the basic concepts of shorthand language and would be able to apply them in daily life. Completion of the course will improve their speed of writing and typing. They would be able to pronounce the English words correctly and can use effective English communication.

<table>
<thead>
<tr>
<th>Unit A</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. The Consonants II. The Vowels III. Intervening Vowels and Position Grammalogues, Punctuation IV. Alternative Signs for r and h V. Diphthongs Abbreviated w. VI. Phaseography Tick the VII. Circle s and z—Left and Right Motion VIII. Stroke s and z IX. Large Circles sw and ss or sz X. Loops st and str.</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit B</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI. Initial Hooks to Straight Strokes and Curves XII. Alternative Forms for fr, vr, etc. Intervening Vowels XIII. Circle or Loop Preceding Initial Hook XIV. n and f Hooks XV. Circles and Loops to Final Hooks XVI The shun hook. XVII. The Aspirate. XVIII. Upward and Downward r. XIX. Upward and downward l and sh. XX. Compound consonants XXI. Vowel indication.</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit C</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXII. The halving principle (section 1). XXIII. The halving principle (section 2). XXIV. The Doubling principle. XXV. Diphonic or two vowel signs. XXVI. Medial semicircle. XXVII. Prefixes negative words. XXVIII. Suffixes and terminations. XXIX. Contractions. XXX. Figures, etc. proper names.</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit D</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXI. Note taking, transcription, etc. XXXII. Essentials vowels. XXXIII. Special contractions. XXXIV. Advanced phraseography. XXXV. Intersections. XXXVI. Business phrases. XXXVIII. Banking and stockbroking phrases. XXXIX. Insurance and shipping phrases. XL. Technical and railway phrases. XLI. Legal phrases. XLIII. Special list of words. XLIV. Shorthand in practice.</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 45 hours

Text Book:
Course Title: Stenography Lab
Course Code: SGS105

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Course Objective: The course is to inculcate writing and listening skills among the students. This would act as building blocks for the learner to begin the study of stenography. As the learners are from the senior secondary background the course has been created keeping in mind their requirements for the future.

Learning Outcome:
After going through this course the participant would have understood the basic concepts of typing and would be able to apply them in daily life. Completion of the course will improve their speed of typing and typing skills.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit A</td>
<td>Beginner : Basics-fjdk, sla:, ghty,vmbn,ruei,woqpx.</td>
<td>04 hrs</td>
</tr>
<tr>
<td>Unit B</td>
<td>Shift keys, numeric pad, Digits and symbols</td>
<td>03 hrs</td>
</tr>
<tr>
<td>Unit C</td>
<td>Intermediate- Syllables and words.</td>
<td>04 hrs</td>
</tr>
<tr>
<td>Unit D</td>
<td>Expert- Paragraphs and Stories</td>
<td>04 hrs</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15 hrs</td>
</tr>
</tbody>
</table>
Course Title: Environment Education
Course Code: EVS102

Course Objective: This course aims at understanding the students in aspects of environmental problems, its potential impacts on global ecosystem and its inhabitants, solutions for these problems as well as environmental ethics which they should adopt to attain sustainable development.

Unit 1
The multidisciplinary nature of environmental studies (2 Hours)
Definition, scope and importance, Need for public awareness

Natural Resources: Renewable and non-renewable resources: (8 Hours)
Natural resources and associated problems.
(a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
(b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
(c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
(d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
(e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
(f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
 • Role of an individual in conservation of natural resources.
 • Equitable use of resources for sustainable lifestyles.

Ecosystem: (4 Hours)
- Concept of an ecosystem
- Structure and function of an ecosystem
- Producers, consumers and decomposers
- Energy flow in the ecosystem
- Ecological succession
- Food chains, food webs and ecological pyramids
- Introduction, types, characteristic features, structure and function of the following ecosystem:
 a. Forest ecosystem
 b. Grassland ecosystem
 c. Desert ecosystem
 d. Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries)

Unit II
Biodiversity and its conservation (4 Hours)
- Introduction – Definition: Genetic, Species and Ecosystem Diversity
• Bio-geographical classification of India
• Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and Option values
• Biodiversity at global, national and local levels
• India as a mega-diversity nation
• Hot-spots of biodiversity
• Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts
• Endangered and endemic species of India
• Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity, global and national efforts.
• Genetically modified crops
• Cartagena Protocol
• Biodiversity Act

Environmental Pollution (8Hours)
• Definition, causes, effects and control measures of:
 a. Air pollution
 b. Water pollution
 c. Soil pollution
 d. Marine pollution
 e. Noise pollution
 f. Thermal pollution
 g. Nuclear pollution
• Solid waste management: Causes, effects and control measures of urban and industrial wastes.
• Role of an individual in prevention of pollution
• Pollution case studies
• Disaster management: floods, earthquake, cyclone and landslides

Indoor Pollution: 2 Hours
• Practical tips on how to save the self from self-inflicted pollution.
• Basics of toxicity.
• Problems of lifestyle based diseases.
• Solutions needed for safety.

Unit III
Social Issues and the Environment 7 Hours
• Population growth, variation among nations, Population explosion – Family Welfare Programmes.
• Environment and human health,
• From unsustainable to sustainable development
• Urban problems and related to energy
• Water conservation, rain water harvesting, watershed management
• Resettlement and rehabilitation of people; its problems and concerns. Case studies.
• Environmental ethics: Issues and possible solutions
• Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
• Wasteland reclamation
DAV UNIVERSITY JALANDHAR

- Consumerism and waste products
- Issues involved in enforcement of environmental legislation
- Public Awareness

Unit IV

Human Population and Environment 5 Hours
- Population Growth and Variations among Nations
- Population Explosion
- Human Rights
- Value Education
- HIV / AIDS
- Women and Child Welfare
- Role of Information Technology in Environment and Human Health
- Case Studies

Global environmental issues 5 Hours
- Stockholm Conference
- Brundtland Commission
- Montreal Protocol
- Kyoto protocol
- Earth Summit
- World Summit

Field Work 5 Hours
- Visit to a local area to document environmental assets river/ forest/ grassland/hill/mountain
- Visit to a local polluted site – Urban / Rural / Industrial / Agricultural
- Study of common plants, insects, birds
- Study of simple ecosystems-Pond, river, hill slopes, etc (Field work equal to 5 lecture hours)

References:

Course Title: Road Safety and Legal Awareness
Course Code: EVS103

Course Objective: This course aims to aware the students about safety measures taken during driving and commuting on roads.

Unit I

Road Safety 15 Hours
- Road safety: Concept and its importance.
- Attitude of people towards road safety
- Role of traffic police in road safety
- Traffic rules
- Traffic signs
- How to obtain driving license
- Traffic offences, penalties and procedures
- Common driving mistakes
- Significance of first-aid in road safety
- Role of civil society in road safety and Traffic police-public relationship

Unit II

Legal Awareness 10 Hours
- Legal literacy
- Child labour
- Domestic Violence
- Right to Education

References:
Course Title: Organic Chemistry
Course Code: CHE153
Time: 04 Hours

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objectives:
This course is intended to learn the basic concepts of Organic Chemistry. The present syllabus has been framed as per the latest UGC guidelines and recent research trends in the subject. The various topics of the syllabus are grouped under different units in order to bring forth the importance of academic and laboratory skills for the undergraduate students.

Expected Prospective:
This course will equip students with the necessary chemical knowledge concerning the fundamentals in the basic areas of Organic chemistry. The students will be able to pursue their career objectives in advance education, in scientific research and in teaching careers following graduation in the course.

PART A
Compounds of Carbon
(8 Hrs)
Differences in chemical and physical behavior as consequences of structure. Discussion (with mechanism) of reactions of hydrocarbons’ ranging from saturated acyclic and alicyclic, unsaturated dienes and aromatic systems. Huckel rule; as applied to 4n+2 systems. Industrial sources and utility of such compounds in daily life for medicine clothing and shelter.

PART B
Stereochemistry
(15 Hrs)

PART C
Alkyl Halides
(8 Hrs)
Structure of alkyl halides and their physical properties. Preparation from alcohols, hydrocarbons, alkenes and by halide exchange method. Reactions : (i) Nucleophilic substitution (SN2 and SN1) kinetics, mechanism, stereochemistry, steric and electronic factors, reactivity of alkyl halides, rearrangement, dependence on nucleophile, role of solvent (ii) Elimination E2 and E1 mechanism, stereochemistry, kinetics, rearrangement.

Alcohols
(4 Hrs)
Structure, physical properties (Hydrogen bonding), Methods of preparation: Grignard synthesis (scope and limitations), Reactions: Reactions with hydrogen halides. Mechanism and rearrangement, Reaction with Phosphorous trihalides, mechanism of Dehydration rearrangement.
PART D

Ethers (2 Hrs)

Aldehydes and Ketones (8 Hrs)
Structure, Physical Properties; Methods of Preparation: Oxidation of Primary and secondary alcohols, Oxidation of methylbenzenes, Reduction of acid chlorides, Friedel- Crafts Acylation,

Suggested Books:
Course Title: Organic Chemistry Lab
Course Code: CHE154

Time: 04 Hours

Course Objectives:
This course is intended to learn the basic concepts of Organic Chemistry Laboratory. The present syllabus has been framed as per the latest UGC guidelines and recent research trends in the subject. The various experiments have been designed to enhance laboratory skills of the undergraduate students.

Expected Prospective:
The students will be able to understand the basic objective of experiments in organic chemistry, properly carry out the experiments, and appropriately record and analyze the results through effective writing and oral communication skills. They will know and follow the proper procedures and regulations for safe handling and use of chemicals and solvents.

1. Calibration of Thermometer
 80-82° (Naphthalene), 113-114° (acetanilide).
 132.5-133° (Urea), 100° (distilled Water)

2. Determination of melting point
 Naphthalene 80-82°, Benzoic acid 121.5-122°
 Urea, 132.5-133°, Succinic acid 184-185°
 Cinnamic acid 132.5-133°, Salicylic acid 157-5-158°
 Acetanilide 113-5-114°, m-Dinitrobenzene 90°
 P-Dichlorobenzene 52°, Aspirin 135°.

3. Determination of boiling points
 Ethanol 78°, Cyclohexane 81.4°, Toluene 110.6°, Benzene 80°.

4. Mixed melting point determination
 Urea-Cinnamic acid mixture of various compositions (1:4, 1:1, 4:1)

5. Distillation
 Simple distillation of ethanol-water mixture using water condenser,
 Distillation of nitrobenzene and aniline using air condenser.

6. Crystallization
 Concept of induction of crystallization
 Phthalic acid from hot water (using fluted filter paper and stemless funnel), Acetanilide
 from boiling water, Naphthalene from ethanol, Benzoic acid from water.

7. Decolorisation and crystallization using charcoal
 Decolorisation of brown sugar (sucrose) with animal charcoal using gravity filtration.
 Crystallization and Decolorisation of impure naphthalene (100g of naphthalene mixed with 0.3g of Congo Red using 1g decolorising carbon) from ethanol.

8. Sublimation (Simple and Vacuum)
 Camphor, Naphthalene, Phthalic acid and Succinic acid.

9. Extraction: the separatory funnel, drying agent:
 Isolation of caffeine from tea leaves

10. Steam distillation
 Purification of aniline/nitrobenzene by steam distillation.
Suggested Books:
Course Title: PHYSICAL CHEMISTRY
Course Code: CHE353

Time: 04 Hours

Course Objectives:
This course is intended to learn the basic concepts of Physical Chemistry. The present syllabus has been framed as per the latest UGC guidelines and recent research trends in the subject. The various topics of the syllabus are grouped under different units in order to bring forth the importance of academic and laboratory skills for the undergraduate students.

Expected Prospective:
This course will equip students with the necessary chemical knowledge concerning the fundamentals in the basic areas of physical chemistry. The students will be able to pursue their career objectives in advance education, in scientific research and in teaching careers following graduation in the course.

PART A
Chemical Thermodynamics (15Hrs)
Objectives and limitations of Chemical Thermodynamics, State functions, thermodynamic equilibrium, work, heat, internal energy, enthalpy.

PART B
Chemical Equilibrium (5 Hrs)
General characteristics of chemical equilibrium, thermodynamic derivation of the law of chemical equilibrium, Van’t Hoff reaction isotherm. Relation between Kp, Kc and Kx. Temperature dependence of equilibrium constant-Van’t Hoff equation, homogeneous & heterogeneous equilibrium, Le Chetallier’s principle.

PART C
Chemical Kinetics (15 Hrs)
Rates of reactions, rate constant, order and molecularity of reactions. Chemical Kinetics: Differential rate law and integrated rate expressions for zero, first, second and third order reactions. Half-lifetime of a reaction, Methods for determining order of reaction, Effect of temperature on reaction rate and the concept of activation energy, Reaction mechanism, Steady state hypothesis

Catalysis
Homogeneous catalysis, Acid-base catalysis and enzyme catalysis (Michaelis-Menten equation). Heterogeneous catalysis, Unimolecular surface reactions.
PART D

Electro-Chemistry (5 Hrs.)
Specific conductance, molar conductance and their dependence on electrolyte concentration, Ionic Equilibria and conductance, Essential postulates of the Debye-Huckel theory of strong electrolytes, Mean ionic activity coefficient and ionic strength, Transport number and its relation to ionic conductance and ionic mobility, Conductometry titrations, pH scale, Buffer solutions, salt hydrolysis, Acid-base indicators.

Electrochemical cells (5Hrs.)
Distinction between electrolytic and electrochemical cells, Standard EMF and electrode potential, Types of electrodes, Reference electrode, Calculation of NG, NH, NS and equilibrium constant from EMF data, Potentiometric determination of pH, Potentiometric titrations.

Suggested Books:

This syllabus has been designed as per national syllabus suggested by UGC and covers 20% extra syllabus as per requisite of honors degree.
Course Title: Physical Chemistry Lab
Course Code: CHE354

Time: 04 Hours

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Course Objectives:
To teach the fundamental concepts of Physical Chemistry and their applications. The syllabus pertaining to B.Sc. (Other branches.) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Expected Prospective:
The students will be able to understand the basic objective of experiments in organic chemistry, properly carry out the experiments, and appropriately record and analyze the results through effective writing and oral communication skills. They will know and follow the proper procedures and regulations for safe handling and use of chemicals and solvents.

1. Treatment of experimental data
Recording of experimental data. Significant number, accuracy and precision, error analysis.

2. Liquids and Solutions
(i) To determine relative viscosities of aqueous solutions of glycerol at different concentrations. (ii) Calculate partial molar volume of glycerol at infinite dilution from density measurement.
(ii) To determine viscosity-average molecular weight, number-average molecular weight and mean diameter of polyvinyl alcohol molecule from intrinsic viscosity data.

3. Thermochemistry
(i) To determine heat capacity of a calorimeter and heat of solution of a given solid compound.
(ii) To determine heat of solution of Solid calcium chloride and calculate lattice energy of calcium chloride using Born-Haber cycle.
(iii) To determine heat of hydration of copper sulphate.

4. Distribution Law
(i) To determine distribution (i.e. partition) coefficient of a solute between water and a non-aqueous solvent.

5. Surface Phenomena
To study the adsorption of acetic acid/oxalic acid from aqueous solution on charcoal. Verify Freundlich and Langmuir adsorption isotherms.

6. Colorimetry
(i) To verify Lambert-Beer law.

7. pH-metry
(i) To titrate a strong acid against a strong base pH-metrically.
(ii) To titrate a weak acid against a strong base and determine the ionization constant of the weak acid.
Suggested Books
Course Title: Basic Computer Applications
Course Code: CSA253
Course Duration: 45 Hours

Course Objective: The students will understand the fundamental concepts of Computer. In addition, they will be proficient in using office automation tools, viz. Word, PowerPoint, Excel, etc.

Unit – A
Introduction to Computer Systems
- Block diagram of a computer: basic functions of each component
- Classification of Digital computers based on size
- Uses of Computers, Operating system basics - Role of operating system
- Networks & data communication
- The uses of a network
- How networks are structured: Network topologies
- Media & hardware, Internet & online resources: How Internet works
- Features of the Internet, Accessing the Internet, Working on the Internet

Unit – B
Word Processing
- Editing and Formatting a Document, Text Formatting, Paragraph Formatting, Headers and Footers
- FIND command & REPLACE command, Checking Spelling and Grammar; On-line Spelling and Grammar correction using Auto correct
- Auto Text, Using Thesaurus, Using Clip Gallery. Inserting Graphics From files
- Working with Tables -Creating Table, Entering Text in the Table
- Changing Format of Text of cells, Changing Column width and Row height, Formatting Table Border
- Using Mail Merge - Mail Merge Procedure, Printing a document

Unit – C
Spreadsheets
- Basic Operations - Arithmetic operators, Comparison operators, Text operator & (ampersand) Reference operator
- Modifying the worksheet layout - Changing Width of Column, Changing Height of Row, Deleting Rows/Columns/Cells, Moving and copying contents of cell, Alignment of text in the cell
- Printing the workbook - Setting up Print Area, Setting up Margins, Defining Header and Footer, Controlling Gridlines
- Working with functions - Date and time function, Statistical function, Financial function, Mathematical and Trigonometric functions, Lookup and Reference Functions, Data Base functions, Text function, Logical functions

Credits	Marks
3 | 75
• Introduction to CHARTS - Formatting Charts
• Working with MACRO, Importing and exporting files

Unit – D
Presentations
• Creating a presentation slide, Design Templates and Blank presentations
• Power Point standard toolbar buttons
• Working with the text in a slide, Arranging Text in Different Levels
• Changing Font, Font Size and Bold; Moving the frame and inserting clip art; Different slide layouts; Formatting the Slide Design; Work with the Slide Master; Saving the presentation
• The Auto Content Wizard; Using Existing Slides; Using the different views of a slide
• Adding Transitions and Animation, Running Slide Show

Reference Books:

Course Title: Basic Computer Applications Laboratory
Course Code: CSA254

- The laboratory will comprise of using commands and tools available in MS Word, PowerPoint, and Excel.
- Assignments based on the applications of above mentioned software packages.
Course Title: Basic Mathematics
Course Code: MTH170

Course Objective: This course is designed to introduce the fundamental concepts of continuity, differentiation and integration of functions of one variable. Its objective is to acquaint students with various applications of these topics relating to extreme value problems, problems of finding areas and distance travelled, moreover to describe connection between integral and differential calculus through Fundamental Theorem of Calculus and This course familiarizes the students with the theory of matrices.

UNIT-A
15 HOURS
Review of trigonometric functions, sum and product formulae for trigonometric functions, Trigonometric Equations.
Complex Numbers and Quadratic Equations Permutations and combinations Binomial Theorem.
Sequences and series

UNIT-B
14 HOURS
Matrices, Operations on Matrices, Determinants, singular and non-singular matrices, Adjoint and Inverse of a matrix.
Co-ordinate Geometry: Rectangular Coordinate system. Straight lines. Circles and family of Circles. Parabola, Ellipse and Hyperbola-their equations in standard form

UNIT-C
14 HOURS

UNIT-D
13 HOURS
Vector valued functions. Limit and continuity of vector functions. Differentiation of vector Functions. Arc length. Line, Surface and Volume integrals. The gradient, divergence and curl. The Del operator. Green’s, Gauss’ and Stokes’ theorems (statements only). Applications to Physical problems

References:
Course Title: Introductory Biotechnology and Bioanalytical Techniques
Course Code: BTY101

Course Objective:
The student will have an introduction to history, scope, importance and interdisciplinary nature of biotechnology and its impact on society. Student will also be exposed to principles, instrumentation & application of various instruments & techniques used in biological field.

Course Contents:
Unit I: Introduction to Biotechnology (7 lectures)
History of Biotechnology, Old and New Biotechnology, Interdisciplinary nature of biotechnology, scope and importance of biotechnology, commercial potential of biotechnology, biotechnology in India.

Unit II: Biotechnology and Healthcare (8 lectures)
Role of biotechnology in prevention, diagnosis and treatment of diseases, detection of genetic diseases, drug designing, drug delivery and targeting, gene therapy, fertility control, DNA fingerprinting and forensic medicine.

Unit III: Fuel Biotechnology (7 lectures)
Renewable and non-renewable energy sources, conventional fuels and their impact on environment, solar energy converters, biofuels, energy crops, biogas, bioethanol, biobutanol, biodiesel, biohydrogen, in vitro photosynthetic-hydrogenase system.

Unit IV: Biosafety (6 lectures)
Objectives of biosafety guidelines, risk assessment, physical and biological containment, planned introduction of genetically modified organisms, biosafety during industrial production, biosafety guidelines in India, guidelines and regulations.

Unit V: Instruments, basic principles and usage (8 lectures)
pH meter, absorption and emission spectroscopy, Principle and law of absorption, fluorimetry, colorimetry, spectrophotometry (visible, UV, infra-red), polarography, centrifugation, atomic absorption, NMR, X-ray crystallography.

Unit VI: Chromatography techniques (8 lectures)
Paper chromatography, thin layer chromatography, column chromatography, HPLC, gas chromatography, gel filtration and ion exchange chromatography.

Unit VII: Electrophoresis (8 lectures)
Agarose gel electrophoresis, SDS polyacrylamide gel electrophoresis, immunoelectrophoresis, Isoelectric focussing and 2D gel electrophoresis.

Unit VIII: Radioactive Techniques (8 lectures)
Radioisotope tracer techniques and autoradiography.

Text Books:

Reference Books:

Course Title: Introductory Biotechnology and Bioanalytical Techniques Lab
Course Code: Bty102

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Experiments
- To understand principle, working and handling of
 a) Laminar Air Flow
 b) pH meter
 c) Autoclave
 d) BOD Incubator
 e) Centrifuge
 f) Agarose and Polyacrylamide gel electrophoresis apparatus
 g) Micropipettes
 h) Incubator Shaker
 i) Water double-distillation unit
- Good Lab Practices:
 - Glassware washing & sterilization, Packing and sterile handling, Biosafety issues.
 - Preparation of standard buffers and determination of pH of a solution.
 - Separation of plant pigments using paper chromatography.
 - Estimation of DNA and RNA.
CELL BIOLOGY

Course Code: BTY201

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Course Objective: To study in detail about the cell which encompasses the cell structure, structure and functions of organelles, locomotion, life cycle and division. To impart knowledge to students about the basics of stem cells and their applications as well as to introduce them to the world of cellular differentiation and cloning.

Course Contents:

Unit I: Cells and organelles (18 lectures)
Introduction: Cell as a basic unit of living system, Biochemical composition of cell, the cell theory, ultrastructure of cell.
Cytoskeleton: The Nature of the Cytoskeleton and endomembrane system, intermediate filaments, microtubules, cilia and centrioles, actin filaments, actin-binding proteins.
Cell membranes: Architecture and dynamics (models); Membrane composition, the lipid bilayer/membrane; A summary of membrane functions - simple diffusion, Facilitated transports, Active transport, Endocytosis, Pinocytosis, Phagocytosis, Exocytosis. Introduction to important receptors in cell membrane.

Unit II: Molecule and Protein trafficking (16 lectures)
The compartmentalization of higher cells, transport of molecules into and out of organellar membranes, the endoplasmic reticulum, transport from the ER through the Golgi Apparatus, transport from the trans Golgi network to lysosomes, transport from the plasma membrane via endosome: Endocytosis, molecular mechanisms of vesicular transport; introduction to transit peptide, signal peptide and translocons.

Unit III: Nucleus and Cell Cycle (10 lectures)
Genome organization, structure and function of nucleus, nuclear envelope, structure of chromatin, nucleosome and chromosome, cell cycle, mitosis and meiosis.

Unit IV: Eukaryotic cell organelles and functions (16 lectures)
Structure and functions of the following cell organelles: endoplasmic reticulum, Golgi complex, lysosome, ribosome and mitochondria. Principles & applications of differential centrifugation in the fractionation of cellular organelles and Svedberg unit; endosymbiotic theories.

Recommended Books:

CELL BIOLOGY LAB
Course Code: BTY202

- Understanding principle, working and handling of light microscope and microtome.
- Understanding microscope adjustments, light sources, microscopic measurements, calibration and types of microscopes available.
- Observation of microorganisms under phase contrast microscope and dark-field microscope.
- Preparation of different types of stains
- Cytological preparations, Fixation, dehydration and staining
- Squash preparation of meiotic and mitotic cells
- Embedding and sectioning.
- Examination of various stages of mitosis and meiosis
MOLECULAR BIOLOGY
Course Code: BTY205

Course Objective: The aim is to extend understanding of the molecular mechanisms via which genetic information is stored, expressed and transmitted among generations.

Course Contents:
Unit I: Life, Nucleic acids and Genome (13 lectures)
Molecular basis of life, models of DNA structure, RNA structure, brief history of development of double helical model of DNA. C-value paradox, cot curve and its significance, repetitive DNA, satellite DNA.

Unit II: Organization of chromosome and gene (14 lectures)
Chromosome structure in Eukaryotes and Prokaryotes, chromatin, nucleosome, histones and non-histones; fine structure of gene, split genes, overlapping genes, gene clusters, transposons and retrotransposons.

Unit III: Central Dogma of Molecular Biology (20 lectures)

Unit IV: Gene Mutation and Molecular Evolution (13 lectures)
Somatic vs germinal mutation, Mutant types, Selective Systems, Induction of mutation, Chromosomal mutations, Changes in chromosome structure mutation and cancer. Introduction to DNA based phylogenetic trees and DNA bar coding.

Reference Books:
Course Title: Molecular Biology Lab
Course Code: BTY208

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Experiments
- Isolation of DNA from animal and plant tissue using classical methods
- Isolation of RNA from animal and plant tissue using classical methods
- Isolation of plasmid DNA from *E. coli* using boiling-prep and alkali lysis method
- Restriction fragment length polymorphism
- Agarose gel electrophoresis
- Polyacrylamide gel electrophoresis
- Elution of nucleic acids from agarose gel
- Primer Designing
- Polymerase Chain Reaction