Pyridines — Structure
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* Isoelectronic with and analogous to benzene
 Stable, not easily oxidised at C, undergoes substitution rather than addition
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» Weakly basic — pK, ~5.2 in H,O (lone pair is not in aromatic sextet)
 Pyridinium salts are also aromatic — ring carbons are more &+ than in parent pyridine
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Pyridines — Synthesis

The Hantzsch synthesis (“5+1")

Me aldol condensation Me ('o O Me Michael addition Me oo
and dehydration

0 Ph 0 0O H Ph 0
= Me,
Me N Me oxidation VE)\ 4\H}N Me

* The reaction is useful for the synthesis of symmetrical pyridines
 The 1,5-diketone intermediate can be isolated in certain circumstances

» A separate oxidation reaction is required to aromatise the dihydropyridine
19



Pyridines — Synthesis

From Enamines or Enamine Equivalents — the Guareschi synthesis (“3+3")

CO,Et CO,Et

* The B-cyano amlde can exist in the ‘enol’ form

Using Cycloaddition Reactions (“4+2")
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» Oxazoles are sufficiently low in aromatic character to react in the Diels-Alder reaction
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Pyridines — Electrophilic Reactions

Pathways for the Electrophilic Aromatic Substitution of Pyridines
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» The position of the equilibrium between the pyridine and pyridinium salt depends on
the substitution pattern and nature of the substituents, but usually favours the salt
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Pyridines — Electrophilic Reactions

Regiochemical Outcome of Electrophilic Substitution of Pyridines
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» Resonance forms with a positive charge on N (i.e. 6 electrons) are very unfavourable

» The B-substituted intermediate, and the transition state leading to this product, have
more stable resonance forms than the intermediates/transition states leading to the
a/y products 22



Pyridines — Electrophilic Reactions

Regiochemical Outcome of Electrophilic Substitution of Pyridinium lons
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» Regiochemical control is even more pronounced in the case of pyridinium ions

* In both pyridine and pyridinium systems, 3 substitution is favoured but the reaction is

slower than that of benzene

23
» Reaction will usually proceed through the small amount of the free pyridine available



Pyridines — Electrophilic Reactions

N Substitution
No2 BF4
@/ @/

N

. No2 e
)Jj/ \)i CH,Cl,

Cl

O)\R @|O3

C Substitution

» Reaction at C is usually difficult and slow, requiring forcing conditions
» Friedel-Crafts reactions are not usually possible on free pyridines
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Pyridines — Electrophilic Reactions

Nitration of Pyridine

NO,
| X c-H,S0,, c-HNO, | X
—_—
_ 300 T, 24 h _
N N
6% !
Use of Activating Groups
Me Me Me
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» Multiple electron-donating groups accelerate the reaction

» Both reactions proceed at similar rates which indicates that the protonation at N occurs
prior to nitration in the first case 25



Pyridines — Electrophilic Reactions

Sulfonation of Pyridine
H,S04, SOq
(low yield)
HgS0,, H,SO o
220 5\4\ A

@/
©

)
HgSO4

» Low yield from direct nitration but good yield via a mercury intermediate

Halogenation of Pyridine

Cl Br
| N Cl,, AICI 5, | N Br,, oleum | N
- -_————
_ 100 — 130 T =
N N N
33% 86%

 Forcing reaction conditions are required for direct halogenation
26



Pyridines — Reduction

Full or Partial Reduction of Pyridines

R R R
/ H2, Pt, / / Na-NHg, /
~oon | orm |
AcOH, rt X EtOH
N N N

H H
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¢

» Pyridines generally resist oxidation at ring carbon atoms and will often undergo
side-chain oxidation in preference to oxidation of the ring

 Full or partial reduction of the ring is usually easier than in the case of benzene
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Pyridines — Nucleophilic Reactions

Regiochemical Outcome of Nucleophilic Addition to Pyridines
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 Nitrogen acts as an electron sink

3 Substitution is less favoured because there are no stable resonance forms with the
negative charge on N

» Aromaticity will is regained by loss of hydride or a leaving group, or by oxidation 28



Pyridines — Nucleophilic Reactions

Nucleophilic Substitution
X Nu
Z NT Z7
) £ O
AN A ©
N N- X

X =Cl, Br, I, (NO,)
Nu = MeO@, NH3, PhSH etc.

» Favoured by electron-withdrawing substituents that are also good leaving groups
» The position of the leaving group influences reaction rate (y > a >> [3)

Cl OEt

0 = )
<> slieVies

Relative rate 40 1 3x104 59



Pyridinium lons — Nucleophilic Reactions

Nucleophilic Substitution
\ \

X = Cl, Br, I, (NO) R

S)

Nu = MeO™, NH3, Ph=H etc.
» Conversion of a pyridine into the pyridinium salt greatly accelerates substitution

» Substituent effects remain the same (0(, y>>[3) butnowa >y
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Relative rate 5 x 107 1.5 x 104 1 104



Pyridines — Pyridyne Formation
Substitution via an Intermediate Pyridyne
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* When very basic nucleophiles are used, a pyridyne intermediate intervenes
* Pyridynes are similar to benzynes and are very reactive (not isolable)
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Pyridines — Nucleophilic Reactions

Nucleophilic Attack with Transfer of Hydride

= PhLi, Et,0,0C (. 0, (air) Z
| ———= | ———— |
A Ph S) N
N Ph N
H e
HN—Y e,

N
G Li®
HL*NHX

X =H (NH3) / 2-aminopyridine

» A hydride acceptor or oxidising agent is required to regenerate aromaticity
 The reaction with LiNH, is referred to as the Chichibabin reaction
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Pyridines — Metal-Halogen Exchange

Direct Exchange of Metal and a Halogen

X Li
D == (O

N
X =ClI, Br, |

» Halogenated pyridines do not tend to undergo nucleophilic displacement with alkyl
lithium or alkyl magnesium reagents

» Metallated pyridines behave like conventional Grignard reagents
Li
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Pyridines — Directed Metallation

Use of Directing Groups

Me
(OMe OMe
@)
| N __tBuli, _ICH,Cl
/ Etzo _78 CC:
N 90%
Li====-0
Ni- Pr2 Ni- Pr2 Ni-Pr,
LlTMP -78 C

NMe2

* Directing groups allow direct lithiation at an adjacent position
* A Lewis basic group is required to complex the Lewis acidic metal of the base
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Oxy-Pyridines — Structure

Oxy-Pyridines/Pyridones
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» Subject to tautomerism
* The a, y systems differ from the 3 systems in terms of reactivity and structure

* In the a case, the equilibrium is highly solvent dependent, but the keto form is favoured
35

In polar solvents



Amino Pyridines — Structure

Amino Pyridine Systems

X X X

— - -«—>» etc.
N NH N NH, N NH,
H Q@ &

» Contrast with oxy-pyridines
* Amino pyridines are polarised in the opposite direction to oxy-pyridines
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Oxy-Pyridines — Reactions

Electrophilic Substitution
OH
O/ Br,, H,0, rt /ﬁt[

Br

NO,
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N
H

38%
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» Reactions such as halogenation, nitration, sulfonation etc. are possible
* N is much less basic than that in a simple pyridine
 Substitution occurs ortho or para to the oxygen substituent (cf. phenols)



Oxy-Pyridines — Reactions

Nucleophilic Substitution

N PCls N X ci
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» Replacement of the oxygen substituent is possible
* In this case, the reaction is driven by the formation of the very strong P=0 bond
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Oxy-Pyridines — Reactions

Cycloaddition
@)
CO,Me Me /
Me K\S\ \

7 el )
| | Me

N CO,Me
CO,Me

Me CO,Me

» Oxy-pyridines have sufficiently low aromatic character that they are able to participate
as dienes in Diels-Alder reactions with highly reactive dienophiles
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Alkyl Pyridines — Deprotonation

Deprotonation with a Strong Base

CHj C

H, CH
N phl t fﬁ
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= pZ .
©

A

OH

» Deprotonation of a and y alkyl groups proceeds at a similar rate, but (3 alkyl groups are
much more difficult to deprotonate

» Bases are also potential nucleophiles for attack of the ring
40



Pyridinium Salts — Reactions

Nucleophilic Attack with Reducing Agents

g () (@— )

N N
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* Nucleophilic attack is much easier (already seen this)
» Deprotonation of alkyl substituents is easier (weak bases are suitable)
* Ring opening is possible by attack of hydroxide
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Pyridine N-Oxides

N-Oxide Formation

©
X RCO;H X X
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meta-chloroperoxybenzoic acid ( m-CPBA)

» The reactivity N-oxides differs considerably from that of pyridines or pyridinium salts
* A variety of peracids can be used to oxidise N but m-CPBA is used most commonly

* N-Oxide formation can be used to temporarily activate the pyridine ring to both
nucleophilic and electrophilic attack
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Pyridine N-Oxides

Electrophilic Substitution

[ H NO, H NO,| NO,
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* The N-oxide is activated to attack by electrophiles at both the a and y positions
* Nitration of an N-oxide is easier than nitration of the parent pyridine

» Reactivity is similar to that of a pyridinium salt in many cases e.g. nucleophilic attack,
deprotonation of alkyl groups etc.

NO, NO, NO,
) PPh, X X
| — | —
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R Ph 7> Ph
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» Deoxgenation is driven by the formation of the very strong P=0O bond

Removal of O
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