Extreme pressure intensity at the base

$$= \frac{W}{b} \left[1 \pm \frac{6e}{b} \right] = \frac{211500}{3} \left[1 \pm \frac{6 \times 0.313}{3} \right] \ N/m^2$$

 $p_{\text{max}} = 114633 \text{ N/m}^2 \text{ and } p_{\text{min}} = 26367 \text{ N/m}^2$ Safe bearing capacity of the soil = 200 kn/m^2 = 200000 N/m^2 Fig.29.23. Shows the pressure distribution at the base.

Design of the stem

Maximum B.M Ultimate moment Effective depth

$$=M = 125000 Nm$$

 $=M_u = 1.5 \times 125000 = 187500 Nm$
 $=d_u = 400 - 40 = 360 mm$

$$\frac{M_u}{bd^2} = \frac{18750 \times 10^3}{1000 \times 360^2} = 1.447$$

Percentage of steel

$$p_t = 50 \left[\frac{1 - \sqrt{1 - \frac{4.6 \times 1.447}{20}}}{\frac{415}{20}} \right] = 0.441\%$$

$$A_{st} = \frac{0.441}{100^{5}} (1000 \times 360) = 1588 \ mm^{2}$$

Spacing of 16 mm diameter bars = $\frac{201 \times 1000}{1588}$ = 126 mm

Provide 16 mm \ bars @ 120 mm c/c

Distribution steel =
$$\frac{0.12}{100} (1000 \times 400) = 480 \text{ mm}^2$$

Spacing of 8 mm diameter bars = $\frac{50 \times 1000}{480}$ = 104 mm say 100 mm c/c

If the distribution steel is provided near both the faces, the spacing of 8 mm diameter bars will be 200 mm near each

on of the toe slab

The bending moment calculations for a 1 metre wide strip of the toe slab are shown in the table below.

B.M. Calculations for a 1 metre wide strip of the toe slab

Load due to	Magnitude of the load (N)	$Distance from \ c \ (m)$	Moment about c (Nm)
Upward pressure $c dj f 85211 \times 1$	85211	0.5	42605.50
$jfe \frac{1}{2} \times 1 \times 29422$	14711	$\frac{2}{3}$	9807.33
	4500	1 12 52	52412.83
Deduct for self weight of toe slab	100 × 300 × 36 p	A 3425	
1 × 0.40 × 25000 B.M. for toe slab	10000	0.5	5000 47412.83

B.M. for toe slab = $M = 47412.83 \ Nm$ Ultimate moment = $M_u = 1.5 \times 47412.83 = 71119.245 \ Nm$