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22 INFINITE SERIES AND
r mf' mtely according as the se%n
0

The series I a,, oscillates finitely e ‘!{&'
ounded or unbounded. Th séries which diverges or cos | S:alledQh
Non-convergent series. 1he TR
convergent series.

eries
Example 1. Discuss the c[)nvergence of the's
PN P k
457478 |
1
11 —1— ...... +—
Sol. Here s, = 1+E-"-zﬂf‘*'f' o o1
[
2) 1
= - 1 =2[1- lt:|
o7
1 ( P
L\t S, = Lt 2[1-—] 2(1-0)=2
n=>co n-oo on

Hence the sequence {S,} converges to 2 )
Therefore, the given series converges and 1ts sum 18 |\ |
Example 2. Examine the series ,2 o

P+2+ 3+t n +o
Jor Convergence or Divergence.

Sol. =124+22+32+ 41
o obHere Za, =1 ,_ n(n+1)2n+1)
> S, =12+224+324 . =TT
. \ .
n(n+1)(2n+1)
- Lt S, = Lt( )6( — =
n-»00 n—=>w

= {S,} diverges to o
= X a, is divergent.
Example 3. Show that the series

2=242=2+.......oscillgtes finitely
: 0,if niseven :
Sol. Here s, = {2 ifnis odd
Therefore Lt S,, does not exist because R

n-»o

Lt S, =0if nis even and 2 if nis odd.

n->c

R

and so the{S, } is not convergent.. 2
Also {8} is not divergent TR T A
and {S, } is bounded as Range of {8} = {0, 2} Whlch
s'b
". the sequence {S,} and consequently th ; oun&ed'
Example 4. Show that the series

zan =Z n(=1p—1 = 1 -

oscillates inifitely, ' +A3 4“’“’ ‘
Sol. Here §, =1-243-44 + (2n-1)
and Sz,,+1—1—2+3~4+ s
........... + 2n=1) — 94
=n+1 ' (2’? b 2"

~ \\ - . %
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i

e

2.3

Lt Sy, = Lt (=n)==c0 anc Aog
Now n->x ol (=n) @ and ”I_';tw Sa +1 7 "Etw (n+1)=o ’
Hence the sequence {S, } oscillates infinitely and therefore the given series T a
cillates infinitely. . ' n |
Example 5. Examine the convergence of the series 1
1 ! ?
+ +
1237234 345
Or
®
/ ] :
show that Z:In(n+1)(n+2)—;
P SR S 1
Sol. Here n 1.23 23 RMRERRRERE m
d a, = 1 _1 ) 1
o M n(AD(+2) 2| n(ntl) (ntDyn+2) |
A ‘ (By Partial Fractions) 1
putn = 1,2, 3. 1 we get o :
i 1]
17 2(1.2 2.3
l- 1 1 1 : % f
©= 202.3 3.4 b ;
PARN ‘
) \\\
Lo | “ 1
37 2034 45| "/ o
---------------------------------- "/l‘; :
.................................. 4 [
if 1 1 ]
W= 2 n(n+1), (n+1)(n+2) p: |

Adding these n equations and cailmcelling the terms diagonally on R.H.S., we 'get

1 1

“ﬂ ;| _l
a1+a2+a3+ ..... ] ..... +cjzn—_2[
1 |

1 A W
)l 7 5[1 2 (n+l)(n+2)]
y L 1 1 1 :I ‘
i ;1I:»toos”\_ n-.too 2(1.2 (n+D)(n+2)
1
L IR
211.2 4 \
: 1
= {S,} is convergent to 7 1
= The given series is convergent and its sum 1s 7
\‘l

1.2_(n+1)(n+2')]

i R

N




24 INFINITE SERIES AN

>  Art. 2. Preliminary Theorems.

Theorem \. The behaviowr of a series does not change an the remm’“"
alteration of a finite number of terms.

Py
ddi[lo

Or
® pé "
Ir 20,, and 21),, be two series. Suppose there exists a nat" al M4
n=1 n=1 Shave. ali ke

. be
mteger p20 such thatb, = a for n>m. Then the two series an?®

n+p, ofthesencs

Proof. Let {S, } and {T } be the sequences of partial sums

For n>m b gt
T, = (by+ byt + bm)+(b,,,+1+ m+ 2 .. by =an+P

= Tm+ am+1'+p+ Ap+2+p”

m + (Sn +p Sm +p)
(Tm Sm + p) +Sn +p

i
= C+S"+p where C=T,, —Sp +0 . ofithe pa

Hence, ‘the sequences {T,} and Sn the tWO give
series zb" and zan behave al';ke and consequently
- 0, behave ahk
Theorem |l. The series Z(z and 2 Ka,K#

n=1 n=1

entof 7 ‘
artial - sums of ‘ty

n series behave alike

¢ i.e. both conye

diverge or oscillate together. o’ Lo
: r

of the serles is multip)

The nature of an infinite series remams unaltered if each term of a

by non zero fixed real K.
’ Proof. Let {S,} and {T,} be the sequences of partial sums of the

T = K(ll'l' Kaz cesesanne +Ka = K (a1+a2+... .......
> Lt T,=L1L K S,=K Lt S,

n->00 . n->w n->x
= {S,jand {T,} behave ahke
> Za and ZK a,, K#0 behave ahke

series = a, and T
+a,) = KS |

Theorem |l If 2 a andz b, be two series convergmg respectlvely to Ad

=l n=1

then Z( Ca, +C2 b, ) converges to C,4 + C,B, where C, and C2 are real numbi
n=/

'\‘

Proof. Let {Sn},{T"},{S' n}be the sequences of partial s{lms of the series
- Za,, Tb and 2 (Cya,+ C, b,) respectively
Given Za, converges to A = [t S,=A

n->0

Given £b, converges to B = [t T, =B
n-»o .
- (cciz i Coby) + (Cray + Cobo) +...... (Cia,+ Coby)
a4+ a,......... Ta)+C,(b. +ph. + +b..)=cls"!§
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& Lt S,,=n[:tm(CIS,,+C2T,,)— Lt C;s, + Lt

n->o
n->o0 2

=C, Lt S, +C, Lt T, =C/A +C,B
2

n-o

4 Thus {S',} converges to C/A + C

B
converges to C;A + C;B. 2B and consequently the series T (Cia,+ C, b,)

1 Theorem V. If Za converges to A and {n

b “ i} IS s str ictly increasing sequence of

natural numbers, then the series :

(a,+ a,+
2 ............ +a + a -
oo converges 1o 4. n) (@t ta,) Fe,
h n d fb k Orv-
e introduction of brackets in a conve
o rgent series does not affect its convergence or

Proof. Let {S,} and {T, } be the sequences of
th
formed series after the intr oductlon bt nth partial sums of Za, and the newly

t
: Let the kth partial sum of the newly formed series contain n; terms of the original
© series Za,,.
Then Tk = Snk
" Now {S"k} is a subsequence of {S, }

» {T,} is a subsequence of {S,}

and {S, } converges to A because Za, converges to A

> {T,} converges to A and consequently the new Serles convcrges to A.
Note. A similar result holds for divergence also. :

Remark

The behaviour of a convergent or divergent series is not altcred by the insertion of brackets
The same result may not hold on removal of brackets.

For example, the series j

(1-1)+ (1-1) + (1=1) + e converges to zero while the series obtained after

the removal of brackets is
1-1 + 1-14+...........e oscillates

Thus convergence of given series is
Theorem V. A necessary condition for convergence.

If Za, is convergent. then Lt a, = 0.

[Prove it as in Example 3 Art. 1]
lost on removal of brackets.

(G.N.D.U. 2003, K.U. 2000)

Proof.Let S, = a, + a, -i’-’_m ....... +a,_1t anv=Sn‘_1+ a,
> an = S” - Sn—l ‘ Lt S S
i nktw a,= nI_;tw S, — S,—1) = ”I_;tqo Sn— Sy-1= -
[ glven a,, isconvergent
. S, }isconvergentto Ssuppose
Lt S, =S
n->®
Lt S,-1 —Sas{S,,_1}lS
1-)00
=0 , subsequence of {S,} J

which proves the requ1red result,

kit khae il Gl adblERa W e i . L }
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€ condition is not sufﬁmcnt ie.

For example, consider Za,, where a,, ﬁ
We shal} prove that Za, diverges although

Lt a,=0
n—->0
1
Proof, Lt a, = —_ =
n->o00 n—>00 n
1 1 1
= 1+—=t =t +m e
Za, = 1+ 2+ 3+ -
Let S, = 14—+ + T
n—- 2 3 ......... J;;
1 1 1 1
> —+—+—=+......... —
n n \/; \/;

> Lt S,=®
n-»o
= {S,} diverges to »
> g n diverges to « although Lt a = 0.

n=»w
Cor. Useful form for Problems.
Lt

n-»oco

Proof. Given Lt L a, %0

a, #0=>3q, is not convergent

If possible suppose Za, is convergent.
Then Lt a,=0 [Theorem V]

n-—+x
which is contrary to (1)
So, our supposition is wrong.
Hence X q, is not convergent.

Remark v = e
\ P gt
If Lt a, = 0, i

n-»o
convergent as well as divergent exist whep Lt q =0
n->00

Example 1. Examine the convergence of the following series :

(0 l+2+3+ ot

l ST T T T, —

3 5 7 2n+1+ ............
) / -

(i) 2:, Vntdntl iy 2"

. ) 3n n=/

(lV) "§1+3n »

-----------

e
¥
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n 1

y Lt a,= Lt o= Lt --——=.;_¢0

SOI (l > N=>0 2]'l+l n—»oo2+ 1

» n
not convergent (Refer Cor. Theorem V)

> 2,18

1
Ls Lt a = Lt ._._——-——-——:0
@ e " e n+idn+l

0 = Li ~ _ \/;"\/n+l |
! \/;+ 4ﬂ+1 (\/;+\/II+1)(\/;I-—‘-\,"+1)
\/_ Jn+1 “ -
= T (nal) = Jn+1—+n | (1)
Now S, = a1+a + a3t
= (V2- f)+(f J_)+(J" J’)+ .......... + (nt1-+n)
= n+1-VR
> Lt°° S, = nLt (Vn+1 \/§)—°° = {S }dxverges »>3a, dlverges
n-» —» 00\
(iii) a, 2> Lt a,= Lt 2"= qo¢0
N> 11>
» Za,, is not convergent
3" 1
(W) : ap = 143" = 1 n
i >3 -
3
e It a;= Lt - _1x0
"_,too n >0 1" - 0+1— '
\ 3’ +1 ‘

% Za,isnot c/anerge‘nt.'
Lt a,= Lt 1#£0

>0

(V)' !dn:'.l,

V.
\ . n-—>0

=» Za isnot convergeint.
’ : ©

Example 2. Prove that the Harmonic series

Lt a, = 0 - n=1
n-»0 1 1
Sol. Here a,= "~ and Lt a,= Lt —=0
n n->o 11->00
Let S, = 1+l+1+ ........ +l
2 3 n
1 1 1 1
and 8y, = 14—+t =t F e T
n n+l 2n

Let € =

2— is not convergent where as

BBEPL S
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__INFINITE SERIES
1

— 4
1 1 + 4+— =
‘ 4t . n+1
Consider ISQ_,,—S,,I = n+l n+2 . 2

ls2n_5,,| >e = {S,} is not cauchy

= {S,}is not convergent.

= 2a,= X 1 is not convergent.
n

Note. {S, }is m, increasing and not c0

Art. 3. Geometric Series .
Prove that the infinite Geometric Series
-1.-
p 4 r+2+17 +o =2"" 18
n=

(©) Convergentif|r| <1
(i) Divergentifr > 1 3_7( {
(7if) Divergent If r = 1
(iv) Oscillating finitely if r = —1
(v) Oscillating infinitely if r < —1

{S,} diverges = X q_ 3

nvergent =

Proof. (i) Let S, = 1+r+2+°3+.......
N
rl<1=s B0

1 n
Lt S, = Lt[ .k ]= 1._0= 1

5 —>00 n—->00 1—r 1—r l—’ l—r :
1

= {S,} converges to I :
> e : U8

i | 1

> z 1l converges and its sum is —— 4
. n=1 -r '7
(if) r>1 = Lt =g
n n b

S” = l+l‘+l'2+ ....... +1-1 = iz r -—L &
r=1"r—1 r—1

> n»w \r—1 r—1, AT =0

- " 1 n
. h->x J
= {Sn} diverges to o ' r<1 'y

n=j
(iii) |
Now Sn = l4r4p24 P
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/l/—'
(S} diverges t0 ®©

=»

[ ]
z #"1 diverges to ©
V= I =1t (1 (0 7= -1)

0 if n 1s even
1ifn is odd

n->%

{S,,) and {S,, +1} are two subsequences of {Sp} conver%ent to two different

Now

jmits.
Hence {S,} is not convergent.

Also Range of {S,} is the set

younded.
We have proved that {S,} is bounded and not convergent

> {S,} oscillates finitely.
> 3 a,oscillates finitely.

o r<-l -
r is negative but numencally greater than 1

{0 1}, which being finite 1s bounded and hence {S,} 1s

r‘ y I

>
»  Powers of r will be positive if index of 7 is even' \and negative if index is odd
Sn='1+r+r2+ ....... pelim SR IS
: 1-r 1-r 1-r
For ) r< —1: | ) . ’ (e
1 )1 AR Eiay
LtS, = Lt - —o=— i ve 42N ;
R 2n e [l_r 1"7‘]1—7’ (? r(,. rz 15+Ve)
Lt S = Lt =L = —(—0)=0o
ang n->o0 Ly nso | 1—7 1-r | 1-r ( ) ks
Thus the sequence {S, } oscillates between -”:iO_o",and,+oo. .
Hence the given series Z oscillates inﬁnitel-y.
n=1

Note. Nature of infinite Geometric series for various values of r may be remembered
s the same is useful in solving many problems.

> Art. 4.Cauchy’s General Principal of Convergence for Series.

The series Z a, converges if and only if, for every € > 0, there exists a natural

n=]
'umber ¢, such that,

la,,,+1+am+2+ ............. +a, | <€eforn>mz=1.

Proof. The series 2 a, COnverges

n=1

e S



210
g converges (Pcf eger b such that
I {S,} of its purnul sun 0,3 posithe in ; |
le Ifr ﬁ)l;CVCl“y | for m 5 | |
ROw rgence 0! sequen +a.) | < €, forn>py
(Cauchy criterfon for COllfag l Aa) T m 3
' ° +a m+
ie 1Y I (al+(lz+--- m >mZt-
<€, forn
d o g Faeeer ay l
l('l" I (PR +am+2 saet 1,
4 sufficient condition for the cony
Remark 3 necess ary an v

Remark .
The above theorem gives us

of an infinite series. ‘
» Art. 5. Series of Positive Terms

-4
Def. A series za,. )
n=l
The words n = m 11l
include all such series whos
terms before that particular term can
divergence of the series.
e.g.
is a positive term serie
We shall now consider some importan

00 {
Theorem. The series Z a, of non

n=1 s
sequence {S ) of its nth partial sums 1S bou

unbounded.
Proof. Givena, 2 0,% n

Sn+l ‘
= Sn+a”+l.>.. Sn

So, {S,} of the series of non-negative terms is always monotonically in
We know that moriotone increasing sequence {S} is convergent if and onl
bounded (above) and divergent if and only if unbounded (above) and consequi

2 a, converges iff {S,} is bounded
and X a, diverges iff {S, } is unbounded;

[0 ]
Cor. 1. 2 a, , an

n=]

= {S,} is m. increasing,

Two cases arise '~ ‘

gase L. {S,} is bounded above

=>ow {8,} %s m.i. and b, above
{8,} is convergent

2a,is convergent

=
Remark

i which a, = 010

finition imply

be omitted withou

7148411+ 21427 F e .
s as its all the terms are posit

t theorems

= a +a2 +...a, +a,H_l

20 ¥ a, either converges or diverges to o

Proof. Sn+1 =a,+ ay +...+ a,+a

Innocaseitcanosxae ~ 02

:

ralln zm is called a series °fposiﬁé

that in the positive term g
ome particular terms
t affecting the cony

itive after s

jve after a particular term jg
regarding series of positive t

-negative terms CONVerges if and o

nded dnd diverges if and only

ne1=S,ta .= S, [

Case IL{S,} is unbounded above

N | ‘
=>°W {S,} is m.i. and unbounde
. {S,} is divergent to .

@, 1s divergent to .
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cma———— i

2.11

L]
o
or 2. 2(1 a, 20%)
c sy rand Lt a,#0 = za,, diverges to o

=l N>
n=|

Proof. Lt @, = 0

n->%

o
- Za,, is not convergent [Refer Art. 2, Theorem Vi Cor.] (1
, Cor. (1)

n=l
oo

;an 1 = 0¥n=Za, is either convergent or divergent to « (2)
From (1) and (2)

o

Zan diverges to .

n=l
Remark

: From Art. 5, Theorem 1, the followin : ;
‘ ; ’ g two-important
Cor. 3 and 4 below. | portant results cap be concluded. See

. A . .« . ) . V . ) .
| Cor 3. A series Y.a, of positive terms is convergent if S, < K (finite) ¥ n. (Try to
'Prove). . ,

Cor 4. A series Ya,, of positive terms is divergent if each term = K (fixed positive
number). '

Proof. Sn =a,tay+...ta, = K+K+... + K

» S, =nKandnK —»oaspn >

nEtw S, = o« = {S,} is divergent to »

= Ya, diverges to ©.

> Art .6.Comparison Tests ’
We now proceed to find some rules with the help of which we can test the conver-
gence or divergence of a series without computing S, which in certain cases is quite incon-

venient to find.

Comparison Tests are convenient in appl
term series and we know the behaviour of one 0
divergence, then we can decide the convergence of the other seri

of the two series.
Theorem 1. f Ya, and Xb, are two series of positive

ication. If Ean and Ebn are two positive
f these two series regarding convergence or
es by comparing the terms

terms such that a, = b”*a‘

nzK Zb,, is convergent, then 2"” is also convergent.
Proof. Let {S,} and {T,} be the sequences of partial sums of the series >.a,, and >h,
NowS, =a; +a, +..ccoes + ot Qg T + a, o ehnzh
=Sk+”k+|+ .......... + (lnSSk+bk+1+ -------- +bn('an"‘ n -
=S, + (T -T,)
¢ nok is i dent of 71
=(S,— = T here C=S,— T 18 indepen
(§,-T) +T,=C+ I, W k™ Lk )

So, §,=C+T,

Given that b, (positive term series) is convergent

I



_ o (Refcr Art. 5, Theofe‘“ i
= (T} is bounded above From (1)) ¥
> "} is bounded above (FF ;

S Theorem 1) :
. lE s COMETE u(:)m (R:f: /:‘n 5and b, convergent = Ea com’erg
Cor 1. a, = 0, b, 2 a,
Cor 2. More g,enelal form of TheoZ:: tle
If 3'b, is a convergent series of pos! b is posifi
terms such that a, < hb, -V-n > K where
is also convergent.

Proof. Let {S,} and v | | .i
2hb, a, <hb¥nzK (Given) | é
i a <h bk+l: ak+2 = /2<b2+(%,k+1 b g b N b")

Thus Qi +ak+2+ ....... + a
> S-S, <h$(T,-Ty
> S, < hT,+ (S, T |
> b, is convergent and b, = 0 (given)
> - {T, } is convergent and m -increasing
> {T,} is converges to l.u.b. say ¢

s and if Ya, is another Serigg
ye constant mdependent of 3

i f the series . |
(T} be sequences of partial sums of the series
n

T, < tAn | ~ - b

n A (-‘- __

> hT, < ht¥n _ i
Hence from (1) b et B

S, < ht + (S,—hT,) where S,;-lzTL = finite real
= {S,}is bounded above and m. increasing
= {S,} converges
= Ean converges

Theorem 2. If Ya, and b, are two positive terms series such that a,8
K and ¥b, is divergent, then >a, is also diver gent. |

Proof. Let {S,} and {T {T,} be the sequences of partial sums of the series f

Now S =a +ay+....+ Gtap, g ton+ a,
= Spt apy ey, ..
Z S +bpyy +byiy o+ b
=8+ T, - A—(S—k)+T
=C+ T, where C = Sy

So, ng+T
Given that b b, > 0is dlvergent
= {T,}is unbounded above (Refe

=T, is mdependent of n

rAlt 5 Tl
= 1S, is unbounded above (From 1(1)) ki
= Za" 18 divergent (Refer Art 5, Theorem 1)
Cor. More general form of Theoreny 2

If2b,is a (lnelgenr serie.

s of Positive
terms such that a,zh b

terms and
lf a, is another series
- Kwhe)ehl 2

s :
is also divergent, powm e constanr indepe II(I’(HN’I "
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|

" f(a" is convergent. |
Thus c%:iiaé(é:nlc'sof AL implies convergence of Eq" f(a".
Case 2. Let Ya"f(a") be convergent
» {T,} is convergent
> (T, 18 bounded a:o;e
s (T, _}i8 bounded a .ovc _ FPUAE
e art of inequality (3) it follows {S,n} is also b°Unded a‘rl

impli tS f(n)is convergent.
e £ f(n) be divergent

From second p

Case 3. Let Ed t
» {S,) isdivergen oe :
- {S:” } is divergent (v {S,n} is subSequ%

ounded above

S p}is unb
it f inequality (3) we get,

From second part 0

T,-1 z—l—{S . —af (D}
" a-1 9 .

> {T,_1}1s unbounded above (v {Spn}is unboy

>  Ya'f(a")is divergent

Case 4. Let Sa"f(a") be divergent

» {T,} is divergent |

> {T,j}is unbounded above

From first part of inequality (3) we get,

a-1
S ., _>_‘f(1)+————T,,
a a

> {Sn}is unbounded above

= Y f(n)is divergent | |
Hence the two series Y, f(n) and Ya" f (a") converge or diverge togetr

Cor . Fora = 2, The theorem becomes Y, f () and 3,2 f (2") behaved
" (M

(' {Tn} is unbow

> Art. 8. The p-series
L 1 : . ,
The series 2——; converges if p > 1 and diverges if p <1.
n

Also discuss the behaviour of p series for p < 0.
Proof. Case 1. Letp > 0 .

Let f(n)¥ ’—11;,- f(n+)=

(n+1)P
Now Ry > 1

n? (n+1)P>O [p>0] = f(n)>f(n+1)>0*

: ¢ ., .
condensati f 1s positive and monotone decreasing function of 7 and henct
ensation Test Cor. the series

2f(m)and 3 2" f (2" behave aliké’ /}
/e

. , 3 |
LegliaN !
i 2 — and ZZf’ (—:] behave alike
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sind
7. Lt -0—'1 (calculus)-

n-s

Some Standard Expansions

- 2 y 3 e b
log(1+x)= x_X_+x__x_+

L an=1l), L2
21

o, for ix |<1
Example 1. Prove that the series

| Tanads

I 1 1 O R L
. Azan = ]+2_+ +—t.., +—n+ ,CO”VE"geS of1

$ 4
1 1 1 1 ; ”
Sol. Let >b, = 1+22+23+24+ ........ +—27+....’ ...... -

Now a, Sb ¥n

and Y b bemg Geometric Series (after ormttmg first term) with comimon ratio

1

3 <1 is convergent.

Hence Y a, converges by comparison Test. A | (Réfef Art. 6 Theorem 1)
Example 2. Examine the following series for converg’ence or diveigence :

(02;,% (n)Z;I;.pSI. (111)22,,_1 UE

",_2 nz logn

1 :
Sol. (i) 18 P 1 A n and ‘Z— is divergent
n n

T
- 2 T is divergent (By Comparison Test).

(i) For psl, i>— Mn and 2— is divergent

"@ Zn—,, is divergent. (By Comparison Test)

e 1 (1)
e 2”"+1<2"" =(5) v




